IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i4p405-408.html
   My bibliography  Save this article

Comment for identification and estimation of nonlinear models using two samples with nonclassical measurement errors, by Carroll, Chen and Hu

Author

Listed:
  • Han Hong

Abstract

This is a very interesting paper that develops nonparametric identification results and and semiparametric estimators for a nonparametric and semiparametric nonclassical measurement error model using a combination of a primary data set and an auxiliary data set. Their estimator not only achieves the semiparametric efficiency bound when the conditional regression model is correctly specified parametrically, but also performs well in finite sample simulation designs. In their paper, an application of their method to studying the relation between the amount of beta-carotene from food and the latent true daily long-term intake of beta-carotene using two data sets from the Eating at America's Table Study (EATS) and the Observing Protein and Energy Nutrition study shows that ignoring measurement errors in the EATS data set leads to substantial attenuation bias in the regression coefficient.

Suggested Citation

  • Han Hong, 2010. "Comment for identification and estimation of nonlinear models using two samples with nonclassical measurement errors, by Carroll, Chen and Hu," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 405-408.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:4:p:405-408
    DOI: 10.1080/10485250903329542
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903329542
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903329542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    2. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    3. Sepanski, J. H. & Carroll, R. J., 1993. "Semiparametric quasilikelihood and variance function estimation in measurement error models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 223-256, July.
    4. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    5. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 343-366.
    6. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    7. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    8. Wang, Liqun, 1998. "Estimation of censored linear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 84(2), pages 383-400, June.
    9. Whitney K. Newey, 2001. "Flexible Simulated Moment Estimation Of Nonlinear Errors-In-Variables Models," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 616-627, November.
    10. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    11. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    12. Bound, John & Brown, Charles & Duncan, Greg J & Rodgers, Willard L, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyao Hu & Yi Xin, 2019. "Identi?cation and estimation of dynamic structural models with unobserved choices," CeMMAP working papers CWP35/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    2. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    3. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    4. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    5. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    6. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
    7. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments," Economics Letters, Elsevier, vol. 100(3), pages 381-384, September.
    8. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    9. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    10. Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric Identification and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information," Boston College Working Papers in Economics 676, Boston College Department of Economics.
    11. Raymond Carroll & Xiaohong Chen & Yingyao Hu, 2010. "Identification and estimation of nonlinear models using two samples with nonclassical measurement errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 419-423.
    12. Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Cowles Foundation Discussion Papers 1644, Cowles Foundation for Research in Economics, Yale University.
    13. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    14. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    15. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Qing Li, 2014. "Identifiability of mean-reverting measurement error with instrumental variable," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(2), pages 118-129, May.
    17. Ramazan Gencay & Nikola Gradojevic, 2009. "Errors-in-Variables Estimation with No Instruments," Working Paper series 30_09, Rimini Centre for Economic Analysis.
    18. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    19. Stoker, Thomas M. & Berndt, Ernst R. & Denny Ellerman, A. & Schennach, Susanne M., 2005. "Panel data analysis of U.S. coal productivity," Journal of Econometrics, Elsevier, vol. 127(2), pages 131-164, August.
    20. Ekaterina Oparina & Sorawoot Srisuma, 2022. "Analyzing Subjective Well-Being Data with Misclassification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 730-743, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:4:p:405-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.