IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v17y2014i3p286-295.html
   My bibliography  Save this article

Numerical simulation of the remodelling process of trabecular architecture around dental implants

Author

Listed:
  • Chao Wang
  • Lizhen Wang
  • Xiaoyu Liu
  • Yubo Fan

Abstract

Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.

Suggested Citation

  • Chao Wang & Lizhen Wang & Xiaoyu Liu & Yubo Fan, 2014. "Numerical simulation of the remodelling process of trabecular architecture around dental implants," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(3), pages 286-295, February.
  • Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:3:p:286-295
    DOI: 10.1080/10255842.2012.681646
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2012.681646
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2012.681646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rik Huiskes & Ronald Ruimerman & G. Harry van Lenthe & Jan D. Janssen, 2000. "Effects of mechanical forces on maintenance and adaptation of form in trabecular bone," Nature, Nature, vol. 405(6787), pages 704-706, June.
    2. M. Pérez & J. Prados-Frutos & J. Bea & M. Doblaré, 2012. "Stress transfer properties of different commercial dental implants: a finite element study," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(3), pages 263-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent A. Stadelmann & Jean Hocké & Jensen Verhelle & Vincent Forster & Francesco Merlini & Alexandre Terrier & Dominique P. Pioletti, 2009. "3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(1), pages 95-100.
    2. Marie Cronskär & John Rasmussen & Mats Tinnsten, 2015. "Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(7), pages 740-748, May.
    3. Alexander Tsouknidas & Georgios Maliaris & Savvas Savvakis & Nikolaos Michailidis, 2015. "Anisotropic post-yield response of cancellous bone simulated by stress–strain curves of bulk equivalent structures," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(8), pages 839-846, June.
    4. Misaki Sakashita & Shintaro Yamasaki & Kentaro Yaji & Atsushi Kawamoto & Shigeru Kondo, 2021. "Three-dimensional topology optimization model to simulate the external shapes of bone," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-23, June.
    5. H. Asgharzadeh Shirazi & M. R. Ayatollahi & A. Asnafi, 2017. "To reduce the maximum stress and the stress shielding effect around a dental implant–bone interface using radial functionally graded biomaterials," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(7), pages 750-759, May.
    6. Rabeb Ben Kahla & Abdelwahed Barkaoui & Moez Chafra & João Manuel R. S. Tavares, 2021. "A General Mechano-Pharmaco-Biological Model for Bone Remodeling Including Cortisol Variation," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    7. M.A. Pérez & P. Fornells & M. Doblaré & J.M. García-Aznar, 2010. "Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(1), pages 71-80.
    8. S. Aland & C. Landsberg & R. Müller & F. Stenger & M. Bobeth & A.C. Langheinrich & A. Voigt, 2014. "Adaptive diffuse domain approach for calculating mechanically induced deformation of trabecular bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(1), pages 31-38, January.
    9. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    10. Dominique P. Pioletti, 2010. "Biomechanics in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 837-846.
    11. María Prados-Privado & Juan Carlos Prados-Frutos & José Luis Calvo-Guirado & José Antonio Bea, 2016. "A random fatigue of mechanize titanium abutment studied with Markoff chain and stochastic finite element formulation," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(15), pages 1583-1591, November.
    12. Gustav Lindberg & Leslie Banks-Sills & Per Ståhle & Ingrid Svensson, 2015. "A two-dimensional model for stress driven diffusion in bone tissue," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(5), pages 457-467, April.
    13. Mahsa Bahari & Farzam Farahmand & Gholamreza Rouhi & Mohammad Movahhedy, 2012. "Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(8), pages 835-844.
    14. Bríanne M. Mulvihill & Patrick J. Prendergast, 2008. "An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(5), pages 443-451.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:17:y:2014:i:3:p:286-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.