IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1401-d576390.html
   My bibliography  Save this article

A General Mechano-Pharmaco-Biological Model for Bone Remodeling Including Cortisol Variation

Author

Listed:
  • Rabeb Ben Kahla

    (Laboratoire de Systèmes et de Mécanique Appliquée (LASMAP), Ecole Polytechnique de Tunis Université De Carthage, La Marsa 2078, Tunisia
    Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Ecole Nationale d’Ingénieurs de Tunis Université Tunis El Manar, BP 37, Tunis 1002, Tunisia)

  • Abdelwahed Barkaoui

    (Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Université Internationale de Rabat, Rocade Rabat Salé 11100, Morocco)

  • Moez Chafra

    (Laboratoire de Systèmes et de Mécanique Appliquée (LASMAP), Ecole Polytechnique de Tunis Université De Carthage, La Marsa 2078, Tunisia)

  • João Manuel R. S. Tavares

    (Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal)

Abstract

The process of bone remodeling requires a strict coordination of bone resorption and formation in time and space in order to maintain consistent bone quality and quantity. Bone-resorbing osteoclasts and bone-forming osteoblasts are the two major players in the remodeling process. Their coordination is achieved by generating the appropriate number of osteoblasts since osteoblastic-lineage cells govern the bone mass variation and regulate a corresponding number of osteoclasts. Furthermore, diverse hormones, cytokines and growth factors that strongly link osteoblasts to osteoclasts coordinated these two cell populations. The understanding of this complex remodeling process and predicting its evolution is crucial to manage bone strength under physiologic and pathologic conditions. Several mathematical models have been suggested to clarify this remodeling process, from the earliest purely phenomenological to the latest biomechanical and mechanobiological models. In this current article, a general mathematical model is proposed to fill the gaps identified in former bone remodeling models. The proposed model is the result of combining existing bone remodeling models to present an updated model, which also incorporates several important parameters affecting bone remodeling under various physiologic and pathologic conditions. Furthermore, the proposed model can be extended to include additional parameters in the future. These parameters are divided into four groups according to their origin, whether endogenous or exogenous, and the cell population they affect, whether osteoclasts or osteoblasts. The model also enables easy coupling of biological models to pharmacological and/or mechanical models in the future.

Suggested Citation

  • Rabeb Ben Kahla & Abdelwahed Barkaoui & Moez Chafra & João Manuel R. S. Tavares, 2021. "A General Mechano-Pharmaco-Biological Model for Bone Remodeling Including Cortisol Variation," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1401-:d:576390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rik Huiskes & Ronald Ruimerman & G. Harry van Lenthe & Jan D. Janssen, 2000. "Effects of mechanical forces on maintenance and adaptation of form in trabecular bone," Nature, Nature, vol. 405(6787), pages 704-706, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.A. Pérez & P. Fornells & M. Doblaré & J.M. García-Aznar, 2010. "Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(1), pages 71-80.
    2. Vincent A. Stadelmann & Jean Hocké & Jensen Verhelle & Vincent Forster & Francesco Merlini & Alexandre Terrier & Dominique P. Pioletti, 2009. "3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(1), pages 95-100.
    3. S. Aland & C. Landsberg & R. Müller & F. Stenger & M. Bobeth & A.C. Langheinrich & A. Voigt, 2014. "Adaptive diffuse domain approach for calculating mechanically induced deformation of trabecular bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(1), pages 31-38, January.
    4. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    5. Dominique P. Pioletti, 2010. "Biomechanics in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 837-846.
    6. Alexander Tsouknidas & Georgios Maliaris & Savvas Savvakis & Nikolaos Michailidis, 2015. "Anisotropic post-yield response of cancellous bone simulated by stress–strain curves of bulk equivalent structures," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(8), pages 839-846, June.
    7. Gustav Lindberg & Leslie Banks-Sills & Per Ståhle & Ingrid Svensson, 2015. "A two-dimensional model for stress driven diffusion in bone tissue," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(5), pages 457-467, April.
    8. Mahsa Bahari & Farzam Farahmand & Gholamreza Rouhi & Mohammad Movahhedy, 2012. "Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(8), pages 835-844.
    9. Chao Wang & Lizhen Wang & Xiaoyu Liu & Yubo Fan, 2014. "Numerical simulation of the remodelling process of trabecular architecture around dental implants," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(3), pages 286-295, February.
    10. Misaki Sakashita & Shintaro Yamasaki & Kentaro Yaji & Atsushi Kawamoto & Shigeru Kondo, 2021. "Three-dimensional topology optimization model to simulate the external shapes of bone," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-23, June.
    11. Bríanne M. Mulvihill & Patrick J. Prendergast, 2008. "An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(5), pages 443-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1401-:d:576390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.