IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v77y2024ics0927539824000240.html
   My bibliography  Save this article

Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns

Author

Listed:
  • Hediger, Simon
  • Näf, Jeffrey

Abstract

The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.

Suggested Citation

  • Hediger, Simon & Näf, Jeffrey, 2024. "Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns," Journal of Empirical Finance, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:empfin:v:77:y:2024:i:c:s0927539824000240
    DOI: 10.1016/j.jempfin.2024.101489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539824000240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2024.101489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. Näf, Jeffrey & Paolella, Marc S. & Polak, Paweł, 2019. "Heterogeneous tail generalized COMFORT modeling via Cholesky decomposition," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 84-106.
    5. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    6. Marc S. Paolella, 2015. "Multivariate asset return prediction with mixture models," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1214-1252, November.
    7. Carlo Marinelli & Stefano D'Addona & Svetlozar T. Rachev, 2012. "Multivariate Heavy-Tailed Models For Value-At-Risk Estimation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-32.
    8. Robert M. Anderson & Stephen W. Bianchi & Lisa R. Goldberg, 2012. "Will My Risk Parity Strategy Outperform?," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(6), pages 75-93, November.
    9. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    10. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    11. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    12. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    13. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    14. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    15. Anderson, Robert M. & Bianchi, Stephen W. & Goldberg, Lisa R., 2012. "Will My Risk Parity Strategy Outperform?," Department of Economics, Working Paper Series qt23t2s950, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    17. Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
    18. Y. Peter Chung & Michael J. Schill, 2006. "Asset Pricing When Returns Are Nonnormal: Fama-French Factors versus Higher-Order Systematic Comoments," The Journal of Business, University of Chicago Press, vol. 79(2), pages 923-940, March.
    19. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    20. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    21. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    22. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    23. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    24. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    25. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    26. Paskalis Glabadanidis, 2009. "A Dynamic Asset Pricing Model with Time-Varying Factor and Idiosyncratic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 7(3), pages 247-264, Summer.
    27. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    2. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    3. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    4. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    5. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    6. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    7. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    8. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    9. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    10. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    11. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    12. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    13. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    14. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    15. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    16. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    17. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    18. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    19. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    20. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    21. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:77:y:2024:i:c:s0927539824000240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.