IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v34y2015i6-10p828-848.html
   My bibliography  Save this article

Symmetrized Multivariate k -NN Estimators

Author

Listed:
  • Yanqin Fan
  • Ruixuan Liu

Abstract

In this article, we propose a symmetrized multivariate k -NN estimator for the conditional mean and for the conditional distribution function. We establish consistency and asymptotic normality of each estimator. For the estimator of the conditional distribution function, we also establish the weak convergence of the conditional empirical process to a Gaussian process. Compared with the corresponding kernel estimators, the asymptotic distributions of our k -NN estimators do not depend on the existence of the marginal probability density functions of the covariate vector. A small simulation study compares the finite sample performance of our symmetrized multivariate k -NN estimator with the Nadaraya-Watson kernel estimator for the conditional mean.

Suggested Citation

  • Yanqin Fan & Ruixuan Liu, 2015. "Symmetrized Multivariate k -NN Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 828-848, December.
  • Handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:828-848
    DOI: 10.1080/07474938.2014.956590
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2014.956590
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2014.956590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    2. Carroll, R. J. & Härdle, W., 1989. "Symmetrized nearest neighbor regression estimates," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 315-318, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    2. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    3. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    4. Marc Henry & Ismael Mourifié, 2013. "Euclidean Revealed Preferences: Testing The Spatial Voting Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 650-666, June.
    5. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    6. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    7. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    8. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    9. Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
    10. De Witte, Kristof & Geys, Benny, 2013. "Citizen coproduction and efficient public good provision: Theory and evidence from local public libraries," European Journal of Operational Research, Elsevier, vol. 224(3), pages 592-602.
    11. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    12. Haupt, Harry & Schnurbus, Joachim & Semmler, Willi, 2018. "Estimation of grouped, time-varying convergence in economic growth," Econometrics and Statistics, Elsevier, vol. 8(C), pages 141-158.
    13. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    14. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    15. Marc Aliana & Diego Prior & Emili Tortosa-Ausina, 2024. "Assessing the impact of environmental factors on emergency healthcare quality: Implications for budget allocation," Working Papers 2024/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    16. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    17. Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
    18. Fritz Schiltz & Kristof Witte & Deni Mazrekaj, 2020. "Managerial efficiency and efficiency differentials in adult education: a conditional and bias-corrected efficiency analysis," Annals of Operations Research, Springer, vol. 288(2), pages 529-546, May.
    19. P. Čížek & S. Sadikoglu, 2018. "Bias-corrected quantile regression estimation of censored regression models," Statistical Papers, Springer, vol. 59(1), pages 215-247, March.
    20. Daniel J. Henderson & Christopher F. Parmeter, 2009. "Imposing economic constraints in nonparametric regression: survey, implementation, and extension," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 433-469, Emerald Group Publishing Limited.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:828-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.