IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v29y2010i4p439-468.html
   My bibliography  Save this article

A Semiparametric Analysis of Gasoline Demand in the United States Reexamining The Impact of Price

Author

Listed:
  • Sebastiano Manzan
  • Dawit Zerom

Abstract

The evaluation of the impact of an increase in gasoline tax on demand relies crucially on the estimate of the price elasticity. This article presents an extended application of the Partially Linear Additive Model (PLAM) to the analysis of gasoline demand using a panel of U.S. households, focusing mainly on the estimation of the price elasticity. Unlike previous semiparametric studies that use household-level data, we work with vehicle-level data within households that can potentially add richer details to the price variable. Both households and vehicles data are obtained from the Residential Transportation Energy Consumption Survey (RTECS) of 1991 and 1994, conducted by the U.S. Energy Information Administration (EIA). As expected, the derived vehicle-based gasoline price has significant dispersion across the country and across grades of gasoline. By using a PLAM specification for gasoline demand, we obtain a measure of gasoline price elasticity that circumvents the implausible price effects reported in earlier studies. In particular, our results show the price elasticity ranges between -0.2, at low prices, and -0.5, at high prices, suggesting that households might respond differently to price changes depending on the level of price. In addition, we estimate separately the model to households that buy only regular gasoline and those that buy also midgrade/premium gasoline. The results show that the price elasticities for these groups are increasing in price and that regular households are more price sensitive compared to nonregular.

Suggested Citation

  • Sebastiano Manzan & Dawit Zerom, 2010. "A Semiparametric Analysis of Gasoline Demand in the United States Reexamining The Impact of Price," Econometric Reviews, Taylor & Francis Journals, vol. 29(4), pages 439-468.
  • Handle: RePEc:taf:emetrv:v:29:y:2010:i:4:p:439-468
    DOI: 10.1080/07474930903562320
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930903562320
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930903562320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Coppejans, 2003. "Flexible but Parsimonious Demand Designs: The Case of Gasoline," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 680-692, August.
    2. Richard Blundell & Alan Duncan, 1998. "Kernel Regression in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 62-87.
    3. Richard Blundell & Alan Duncan & Krishna Pendakur, 1998. "Semiparametric estimation and consumer demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 435-461.
    4. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    5. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    6. Nicol, C. J., 2003. "Elasticities of demand for gasoline in Canada and the United States," Energy Economics, Elsevier, vol. 25(2), pages 201-214, March.
    7. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    8. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    9. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    10. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    11. Puller, Steven L. & Greening, Lorna A., 1999. "Household adjustment to gasoline price change: an analysis using 9 years of US survey data," Energy Economics, Elsevier, vol. 21(1), pages 37-52, February.
    12. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    13. Adonis Yatchew & Joungyeo Angela No, 2001. "Household Gasoline Demand in Canada," Econometrica, Econometric Society, vol. 69(6), pages 1697-1709, November.
    14. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    15. Moral, Ignacio & Rodriguez-Poo, Juan M., 2004. "An efficient marginal integration estimator of a semiparametric additive modelling," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 451-463, October.
    16. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    17. Richard Schmalensee & Thomas M. Stoker, 1999. "Household Gasoline Demand in the United States," Econometrica, Econometric Society, vol. 67(3), pages 645-662, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weiwei, 2015. "Gasoline taxes or efficiency standards? A heterogeneous household demand analysis," Energy Policy, Elsevier, vol. 80(C), pages 54-64.
    2. Liu, Weiwei, 2014. "Modeling gasoline demand in the United States: A flexible semiparametric approach," Energy Economics, Elsevier, vol. 45(C), pages 244-253.
    3. Tiezzi, Silvia & Verde, Stefano F., 2016. "Differential demand response to gasoline taxes and gasoline prices in the U.S," Resource and Energy Economics, Elsevier, vol. 44(C), pages 71-91.
    4. Alhassan A. Karakara & Evans S. Osabuohien, 2020. "Clean versus Dirty Energy: Empirical Evidence from Fuel Adoption and Usage by Households in Ghana," Working Papers 20/075, European Xtramile Centre of African Studies (EXCAS).
    5. Karakara, Alhassan & Osabuohien, Evans & Asongu, Simplice, 2021. "Domestic Energy Consumption in Ghana: Deprivation versus Likelihood of Access," MPRA Paper 110137, University Library of Munich, Germany.
    6. Marzoughi, Hassan & Kennedy, P. Lynn, "undated". "The Impact of Ethanol Production on the U.S. Gasoline Market," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119752, Southern Agricultural Economics Association.
    7. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    8. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    9. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
    10. Eakins, John, 2016. "An application of the double hurdle model to petrol and diesel household expenditures in Ireland," Transport Policy, Elsevier, vol. 47(C), pages 84-93.
    11. Jeyhun Mikayilov & Fred Joutz & Fakhri Hasanov, 2019. "Gasoline Demand in Saudi Arabia: Are the Price and Income Elasticities Constant?," Discussion Papers ks--2019-dp81, King Abdullah Petroleum Studies and Research Center.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzan, sebastiano & Zerom, Dawit, 2008. "A Semiparametric Analysis of Gasoline Demand in the US: Reexamining The Impact of Price," MPRA Paper 14386, University Library of Munich, Germany.
    2. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
    3. Wadud, Zia & Noland, Robert B. & Graham, Daniel J., 2010. "A semiparametric model of household gasoline demand," Energy Economics, Elsevier, vol. 32(1), pages 93-101, January.
    4. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    5. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    9. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    10. Liu, Weiwei, 2015. "Gasoline taxes or efficiency standards? A heterogeneous household demand analysis," Energy Policy, Elsevier, vol. 80(C), pages 54-64.
    11. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    12. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    13. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Su, Qing, 2011. "The effect of population density, road network density, and congestion on household gasoline consumption in U.S. urban areas," Energy Economics, Elsevier, vol. 33(3), pages 445-452, May.
    15. Ivan Korolev, 2018. "A Consistent Heteroskedasticity Robust LM Type Specification Test for Semiparametric Models," Papers 1810.07620, arXiv.org, revised Nov 2019.
    16. repec:wyi:journl:002107 is not listed on IDEAS
    17. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.
    18. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.
    19. Gillingham, Kenneth & Jenn, Alan & Azevedo, Inês M.L., 2015. "Heterogeneity in the response to gasoline prices: Evidence from Pennsylvania and implications for the rebound effect," Energy Economics, Elsevier, vol. 52(S1), pages 41-52.
    20. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    21. Nicol, C. J., 2003. "Elasticities of demand for gasoline in Canada and the United States," Energy Economics, Elsevier, vol. 25(2), pages 201-214, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:29:y:2010:i:4:p:439-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.