IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/15-03.html
   My bibliography  Save this paper

Nonparametric IV estimation of shape-invariant Engel curves

Author

Listed:
  • Richard Blundell

    (Institute for Fiscal Studies and University College London)

  • Xiaohong Chen

    (Institute for Fiscal Studies and Yale University)

  • Dennis Kristensen

    (Institute for Fiscal Studies and University College London)

Abstract

This paper concerns the identification and estimation of a shape-invariant Engel curve system with endogenous total expenditure. The shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of Engel curves. Our focus is on the identification and estimation of both the nonparametric shape of the Engel curve and the parametric specification of the demographic scaling parameters. We present a new identification condition, closely related to the concept of bounded completeness in statistics. The estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric IV regression when the endogenous regressor has unbounded support. Root-n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of ?ow-level' sufficient conditions. Monte Carlo simulations shed lights on the choice of smoothing parameters and demonstrate that the sieve IV estimator performs well. An application is made to the estimation of Engel curves using the UK Family Expenditure Survey and shows the importance of adjusting for endogeneity in terms of both the curvature and demographic parameters of systems of Engel curves.

Suggested Citation

  • Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:15/03
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0315.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Hardle, W. & Jerison, M., 1990. "Cross section Engel curves over time," LIDAM Discussion Papers CORE 1990016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, January.
    4. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    5. Blundell, Richard, 1988. "Consumer Behaviour: Theory and Empirical Evidence--a Survey," Economic Journal, Royal Economic Society, vol. 98(389), pages 16-65, March.
    6. Pendakur, Krishna, 1998. "Semiparametric estimates and tests of base-independent equivalence scales," Journal of Econometrics, Elsevier, vol. 88(1), pages 1-40, November.
    7. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    8. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, January.
    9. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    10. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    11. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    12. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    13. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    14. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    15. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Richard Blundell & Alan Duncan, 1998. "Kernel Regression in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 62-87.
    17. Richard Blundell & Alan Duncan & Krishna Pendakur, 1998. "Semiparametric estimation and consumer demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 435-461.
    18. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, January.
    19. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    20. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    21. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, January.
    22. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers 09/01, Institute for Fiscal Studies.
    23. Peter Hall & Joel L. Horowitz, 2003. "Nonparametric methods for inference in the presence of instrumental variables," CeMMAP working papers CWP02/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    24. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    25. Kelvin J. Lancaster (ed.), 1998. "Consumer Theory," Books, Edward Elgar Publishing, number 1189.
    26. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, January.
    27. Blundell,R. W. & Preston,Ian & Walker,Ian (ed.), 1994. "The Measurement of Household Welfare," Cambridge Books, Cambridge University Press, number 9780521451956, January.
    28. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, January.
    29. Chen, Xiaoheng & Conley, Timothy G., 2001. "A new semiparametric spatial model for panel time series," Journal of Econometrics, Elsevier, vol. 105(1), pages 59-83, November.
    30. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in economics and econometrics :theory and applications," ULB Institutional Repository 2013/9557, ULB -- Universite Libre de Bruxelles.
    31. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    2. Richard Blundell & Martin Browning & Ian Crawford, 2008. "Best Nonparametric Bounds on Demand Responses," Econometrica, Econometric Society, vol. 76(6), pages 1227-1262, November.
    3. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(2), pages 258-278, April.
    4. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    5. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    6. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    7. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    8. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    9. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    10. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    11. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    12. Aassve, Arnstein & Arpino, Bruno, 2008. "Estimation of causal effects of fertility on economic wellbeing: evidence from rural Vietnam," ISER Working Paper Series 2007-27, Institute for Social and Economic Research.
    13. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    14. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    15. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    16. Koster, Hans R.A. & Rouwendal, Jan, 2013. "Agglomeration, commuting costs, and the internal structure of cities," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 352-366.
    17. Andrew Chesher, 2004. "Identification of sensitivity to variation in endogenous variables," CeMMAP working papers 10/04, Institute for Fiscal Studies.
    18. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    19. Zenou, Yves & Patacchini, Eleonora & Liu, Xiaodong, 2011. "Peer Effects in Education, Sport, and Screen Activities: Local Aggregate or Local Average?," CEPR Discussion Papers 8477, C.E.P.R. Discussion Papers.
    20. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:15/03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.