IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i8p853-860.html
   My bibliography  Save this article

What should the value of lambda be in the exponentially weighted moving average volatility model?

Author

Listed:
  • Bernard Bollen

Abstract

Forecasting volatility is fundamental to forecasting parametric models of value-at-risk. The exponentially weighted moving average (EWMA) volatility model is the recommended model for forecasting volatility by the Riskmetrics group. For monthly data, the lambda parameter of the EWMA model is recommended to be set to 0.97. In this study, we empirically investigate if this is the optimal value of lambda in terms of forecasting volatility. Employing monthly realized volatility as the benchmark for testing the value of lambda, it is found that a value of lambda of 0.97 is far from optimal. The tests are robust to a variety of test statistics. It is further found that the optimal value of lambda is time varying and should be based upon recent historical data. The article offers a practical method to increase the reliability and accuracy of value-at-risk forecasts that can be easily implemented within an Excel spreadsheet.

Suggested Citation

  • Bernard Bollen, 2015. "What should the value of lambda be in the exponentially weighted moving average volatility model?," Applied Economics, Taylor & Francis Journals, vol. 47(8), pages 853-860, February.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:8:p:853-860
    DOI: 10.1080/00036846.2014.982853
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2014.982853
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2014.982853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard D. F. Harris & Jian Shen, 2003. "Robust estimation of the optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(8), pages 799-816, August.
    2. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    5. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    6. Moosa, Imad A. & Bollen, Bernard, 2002. "A benchmark for measuring bias in estimated daily value at risk," International Review of Financial Analysis, Elsevier, vol. 11(1), pages 85-100.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
    2. Yan Jin & Cornelis Gardebroek & Nico Heerink, 2024. "The impact of Chinese rice support policies on rice acreages," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 16(3), pages 705-719, June.
    3. Axel A. Araneda, 2021. "Asset volatility forecasting:The optimal decay parameter in the EWMA model," Papers 2105.14382, arXiv.org.
    4. Jean‐Christophe Delfim & Martin Hoesli, 2021. "Robust desmoothed real estate returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(1), pages 75-105, March.
    5. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    6. Jin, Yan & Gardebroek, Cornelis & Heerink, Nico, 2021. "Price Responsiveness of Rice Farmers and the Probability of Effective Grain Support Policies in China," 2021 Conference, August 17-31, 2021, Virtual 315097, International Association of Agricultural Economists.
    7. Konstantinos Bisiotis & Stelios Psarakis & Athanasios N. Yannacopoulos, 2022. "Affine Term Structure Models: Applications in Portfolio Optimization and Change Point Detection," Mathematics, MDPI, vol. 10(21), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
    2. Piotr Wdowiński & Aneta Zglińska-Pietrzak, 2005. "The Warsaw Stock Exchange Index WIG: Modeling and Forecasting," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 7, pages 115-127, University of Lodz.
    3. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    4. Dahl Christian M & Iglesias Emma, 2011. "Modeling the Volatility-Return Trade-Off When Volatility May Be Nonstationary," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-32, February.
    5. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    6. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    7. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    8. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    9. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    10. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    11. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    12. Khim-Sen Liew & Kian-Ping Lim & Chee-Keong Choong, 2003. "On The Forecastability Of Asean-5 Stock Markets Returns Using Time Series Models," Finance 0307012, University Library of Munich, Germany.
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    15. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    16. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    17. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    18. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    19. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    20. Takuo Higashide & Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2021. "New Dataset for Forecasting Realized Volatility: Is the Tokyo Stock Exchange Co-Location Dataset Helpful for Expansion of the Heterogeneous Autoregressive Model in the Japanese Stock Market?," JRFM, MDPI, vol. 14(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:8:p:853-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.