IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v45y2013i33p4677-4697.html
   My bibliography  Save this article

Forecasting house prices for the four census regions and the aggregate US economy in a data-rich environment

Author

Listed:
  • Rangan Gupta

Abstract

This article considers the ability of large-scale (involving 145 fundamental variables) time-series models, estimated by dynamic factor analysis and Bayesian shrinkage, to forecast real house price growth rates of the four US census regions and the aggregate US economy. Besides the standard Minnesota prior, we also use additional priors that constrain the sum of coefficients of the VAR models. We compare 1- to 24-months-ahead forecasts of the large-scale models over an out-of-sample horizon of 1995:01--2009:03, based on an in-sample of 1968:02--1994:12, relative to a random walk model, a small-scale VAR model comprising just the five real house price growth rates and a medium-scale VAR model containing 36 of the 145 fundamental variables besides the five real house price growth rates. In addition to the forecast comparison exercise across small-, medium- and large-scale models, we also look at the ability of the 'optimal' model (i.e. the model that produces the minimum average mean squared forecast error) for a specific region in predicting ex ante real house prices (in levels) over the period of 2009:04 till 2012:02. Factor-based models (classical or Bayesian) perform the best for the North East, Mid-West, West census regions and the aggregate US economy and equally well to a small-scale VAR for the South region. The 'optimal' factor models also tend to predict the downward trend in the data when we conduct an ex ante forecasting exercise. Our results highlight the importance of information content in large number of fundamentals in predicting house prices accurately.

Suggested Citation

  • Rangan Gupta, 2013. "Forecasting house prices for the four census regions and the aggregate US economy in a data-rich environment," Applied Economics, Taylor & Francis Journals, vol. 45(33), pages 4677-4697, November.
  • Handle: RePEc:taf:applec:v:45:y:2013:i:33:p:4677-4697
    DOI: 10.1080/00036846.2013.797561
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2013.797561
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2013.797561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rangan Gupta & Faaiqa Hartley, 2013. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
    2. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    2. Rangan Gupta & Hardik A. Marfatia & Christian Pierdzioch & Afees A. Salisu, 2022. "Machine Learning Predictions of Housing Market Synchronization across US States: The Role of Uncertainty," The Journal of Real Estate Finance and Economics, Springer, vol. 64(4), pages 523-545, May.
    3. repec:ipg:wpaper:2014-585 is not listed on IDEAS
    4. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting Real House Price of the U.S.: An Analysis Covering 1890 to 2012," Working Papers 201362, University of Pretoria, Department of Economics.
    5. Bouras, Christos & Christou, Christina & Gupta, Rangan & Lesame, Keagile, 2023. "Forecasting state- and MSA-level housing returns of the US: The role of mortgage default risks," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    7. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    8. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    9. Diego Ardila & Dorsa Sanadgol & Peter Cauwels & Didier Sornette, 2017. "Identification and critical time forecasting of real estate bubbles in the USA," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 613-631, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
    2. Tomas Konecny & Oxana Babecka-Kucharcukova, 2016. "Credit Spreads and the Links between the Financial and Real Sectors in a Small Open Economy: The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 302-321, August.
    3. Michal Franta, 2012. "Macroeconomic Effects of Fiscal Policy in the Czech Republic: Evidence Based on Various Identification Approaches in a VAR Framework," Working Papers 2012/13, Czech National Bank.
    4. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    5. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    6. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    7. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    8. Francesco Furlanetto & Francesco Ravazzolo & Samad Sarferaz, 2019. "Identification of Financial Factors in Economic Fluctuations," The Economic Journal, Royal Economic Society, vol. 129(617), pages 311-337.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    10. Fabio Canova & Matteo Ciccarelli, 2002. "Panel Index Var Models: Specification, Estimation, Testing And Leading Indicators," Working Papers. Serie AD 2002-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    11. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    12. Tsangyao Chang & Tsung-Pao Wu & Rangan Gupta, 2015. "Are house prices in South Africa really nonstationary? Evidence from SPSM-based panel KSS test with a Fourier function," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 32-53, January.
    13. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    14. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    15. Mr. Serhat Solmaz & Marzie Taheri Sanjani, 2015. "How External Factors Affect Domestic Economy: Nowcasting an Emerging Market," IMF Working Papers 2015/269, International Monetary Fund.
    16. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.
    17. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    18. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    19. Javier García-Cicco, 2010. "Estimating Models for Monetary Policy Analysis in Emerging Countries," Working Papers Central Bank of Chile 561, Central Bank of Chile.
    20. Antonio Pesce, 2013. "Is Decoupling in action?," ERSA conference papers ersa13p1252, European Regional Science Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:45:y:2013:i:33:p:4677-4697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.