IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v43y2011i19p2381-2398.html
   My bibliography  Save this article

Private information of the Fed and predictability of stock returns

Author

Listed:
  • Bedri Kamil Onur Tas

Abstract

This article investigates whether the Federal Reserve's (Fed's) private Gross Domestic Product (GDP) growth forecasts, as reported in the Greenbook of the Fed, contain information about future real and excess stock returns. I implement long-horizon regressions to analyse the predictive power of the Fed's GDP growth forecasts. The regressions conclude that the Fed's GDP growth forecasts can be used to predict long- and short-term stock returns. The size of the coefficient of the Fed's orthogonal GDP growth forecast indicates that 1% increase in the Fed's forecast predicts 2-4% decrease in real and excess stock returns. The regressions considering the size effect suggest that the predictive power of the Fed's GDP growth forecasts increases as the size of the portfolio decreases. A comparison of the Fed's forecasts and the commercial forecasts shows that the Fed's GDP growth forecasts contain information that does not exist in the commercial forecasts. I investigate the sources of the Fed's superior private information and predictive power. Analysis suggests that the source of the predictive power of the Fed's GDP growth forecasts is the private information about future surprise monetary policy actions embedded in them.

Suggested Citation

  • Bedri Kamil Onur Tas, 2011. "Private information of the Fed and predictability of stock returns," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2381-2398.
  • Handle: RePEc:taf:applec:v:43:y:2011:i:19:p:2381-2398
    DOI: 10.1080/00036840903194220
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00036840903194220
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036840903194220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Mark Gertler & Simon Gilchrist, 1994. "Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(2), pages 309-340.
    3. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    4. Chih-Ling Lin & Ming-Chieh Wang & Yin-Feng Gau, 2007. "Expected risk and excess returns predictability in emerging bond markets," Applied Economics, Taylor & Francis Journals, vol. 39(12), pages 1511-1529.
    5. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    6. Rigobon, Roberto & Sack, Brian, 2004. "The impact of monetary policy on asset prices," Journal of Monetary Economics, Elsevier, vol. 51(8), pages 1553-1575, November.
    7. Faust, Jon & Svensson, Lars E O, 2001. "Transparency and Credibility: Monetary Policy with Unobservable Goals," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(2), pages 369-397, May.
    8. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    9. Thomas Cooley & Vincenzo Quadrini, 2006. "Monetary policy and the financial decisions of firms," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(1), pages 243-270, January.
    10. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    11. Steven M. Fazzari & R. Glenn Hubbard & Bruce C. Petersen, 1988. "Financing Constraints and Corporate Investment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 19(1), pages 141-206.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Thorbecke, Willem, 1997. "On Stock Market Returns and Monetary Policy," Journal of Finance, American Finance Association, vol. 52(2), pages 635-654, June.
    14. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    15. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    16. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    17. Jeffrey Jarrett & Eric Kyper, 2006. "Capital market efficiency and the predictability of daily returns," Applied Economics, Taylor & Francis Journals, vol. 38(6), pages 631-636.
    18. Refet S. Gürkaynak & Brian Sack & Eric Swanson, 2005. "The Sensitivity of Long-Term Interest Rates to Economic News: Evidence and Implications for Macroeconomic Models," American Economic Review, American Economic Association, vol. 95(1), pages 425-436, March.
    19. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    20. Patelis, Alex D, 1997. "Stock Return Predictability and the Role of Monetary Policy," Journal of Finance, American Finance Association, vol. 52(5), pages 1951-1972, December.
    21. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    22. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    23. O. David Gulley & Jahangir Sultan, 2003. "The link between monetary policy and stock and bond markets: evidence from the federal funds futures contract," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 199-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wade D. Pfau, 2012. "Long-term investors and valuation-based asset allocation," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1343-1353, August.
    2. Bedri Kamil Onur Tas, 2007. "Inflation Targeting as a Signalling Mechanism," Working Papers 0701, TOBB University of Economics and Technology, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chava, Sudheer & Gallmeyer, Michael & Park, Heungju, 2015. "Credit conditions and stock return predictability," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 117-132.
    2. Paulo Maio, 2014. "Another Look at the Stock Return Response to Monetary Policy Actions," Review of Finance, European Finance Association, vol. 18(1), pages 321-371.
    3. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    4. Lettau, Martin & Ludvigson, Sydney C., 2005. "Expected returns and expected dividend growth," Journal of Financial Economics, Elsevier, vol. 76(3), pages 583-626, June.
    5. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    6. Hsu, Po-Hsuan, 2009. "Technological innovations and aggregate risk premiums," Journal of Financial Economics, Elsevier, vol. 94(2), pages 264-279, November.
    7. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    8. Favero, Carlo A. & Gozluklu, Arie E. & Tamoni, Andrea, 2011. "Demographic Trends, the Dividend-Price Ratio, and the Predictability of Long-Run Stock Market Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1493-1520, October.
    9. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    10. Møller, Stig Vinther, 2009. "Habit persistence: Explaining cross-sectional variation in returns and time-varying expected returns," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 525-536, September.
    11. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    12. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    13. J. Annaert & W. Van Hyfte, 2006. "Long-Horizon Mean Reversion for the Brussels Stock Exchange: Evidence for the 19th Century," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/376, Ghent University, Faculty of Economics and Business Administration.
    14. Maio, Paulo, 2016. "Cross-sectional return dispersion and the equity premium," Journal of Financial Markets, Elsevier, vol. 29(C), pages 87-109.
    15. David A. Becher & Gerald R. Jensen & Jeffrey M. Mercer, 2008. "Monetary Policy Indicators As Predictors Of Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 31(4), pages 357-379, December.
    16. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    17. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    18. Engsted, Tom & Hyde, Stuart & Møller, Stig V., 2010. "Habit formation, surplus consumption and return predictability: International evidence," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1237-1255, November.
    19. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    20. Dunbar, Kwamie & Jiang, Jing, 2020. "What do movements in financial traders’ net long positions reveal about aggregate stock returns?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:43:y:2011:i:19:p:2381-2398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.