IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v5y1998i2p107-116.html
   My bibliography  Save this article

Optimal exercise boundary for an American put option

Author

Listed:
  • Rachel Kuske
  • Joseph Keller

Abstract

The optimal exercise boundary near the expiration time is determined for an American put option. It is obtained by using Green's theorem to convert the boundary value problem for the price of the option into an integral equation for the optimal exercise boundary. This integral equation is solved asymptotically for small values of the time to expiration. The leading term in the asymptotic solution is the result of Barles et al. An asymptotic solution for the option price is obtained also.

Suggested Citation

  • Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.
  • Handle: RePEc:taf:apmtfi:v:5:y:1998:i:2:p:107-116
    DOI: 10.1080/135048698334673
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048698334673
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048698334673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guy Barles & Julien Burdeau & Marc Romano & Nicolas Samsoen, 1995. "Critical Stock Price Near Expiration," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 77-95, April.
    2. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    2. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    3. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
    4. Daniel Sevcovic & Martin Takac, 2011. "Sensitivity analysis of the early exercise boundary for American style of Asian options," Papers 1101.3071, arXiv.org.
    5. Xinfu Chen & John Chadam & Lishang Jiang & Weian Zheng, 2008. "Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 185-197, January.
    6. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    7. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    8. Hsuan-Ku Liu, 2013. "The Convexity of the Free Boundary for the American put option," Papers 1304.5337, arXiv.org, revised Apr 2017.
    9. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    10. Christian Bayer & Ra'ul Tempone & Soren Wolfers, 2018. "Pricing American Options by Exercise Rate Optimization," Papers 1809.07300, arXiv.org, revised Aug 2019.
    11. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    12. Kristoffer Glover & Peter W Duck & David P Newton, 2010. "On nonlinear models of markets with finite liquidity: Some cautionary notes," Published Paper Series 2010-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    13. Fannu Hu & Charles Knessl, 2010. "Asymptotics of Barrier Option Pricing Under the CEV Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 261-300.
    14. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    2. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    3. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    4. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    5. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    6. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    7. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    8. D. J. Manuge, 2013. "Multi-Asset Option Pricing with Exponential L\'evy Processes and the Mellin Transform," Papers 1309.3035, arXiv.org.
    9. Giandomenico, Rossano, 2006. "Valuing an American Put Option," MPRA Paper 20082, University Library of Munich, Germany.
    10. George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
    11. Damien Lamberton & Mohammed Mikou, 2013. "Exercise boundary of the American put near maturity in an exponential Lévy model," Finance and Stochastics, Springer, vol. 17(2), pages 355-394, April.
    12. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Jensen, Mads Vestergaard & Pedersen, Lasse Heje, 2016. "Early option exercise: Never say never," Journal of Financial Economics, Elsevier, vol. 121(2), pages 278-299.
    15. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    16. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    17. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    18. Cole, John A. & Cadogan, Godfrey, 2014. "Bankruptcy risk induced by career concerns of regulators," Finance Research Letters, Elsevier, vol. 11(3), pages 259-271.
    19. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    20. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:5:y:1998:i:2:p:107-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.