IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.3035.html
   My bibliography  Save this paper

Multi-Asset Option Pricing with Exponential L\'evy Processes and the Mellin Transform

Author

Listed:
  • D. J. Manuge

Abstract

Exponential L\'evy processes have been used for modelling financial derivatives because of their ability to exhibit many empirical features of markets. Using their multidimensional analogue, a general analytic pricing formula is obtained, allowing for the direct valuation of multi-asset options on $n \in \z^+$ risky assets. By providing alternate expressions for multi-asset option payoffs, the general pricing formula can reduce to many popular cases, including American basket options which are considered herein. This work extends previous results of basket options to dimensions $n \geq 3$ and more generally, to payoff functions that satisfy Lipschitz continuity.

Suggested Citation

  • D. J. Manuge, 2013. "Multi-Asset Option Pricing with Exponential L\'evy Processes and the Mellin Transform," Papers 1309.3035, arXiv.org.
  • Handle: RePEc:arx:papers:1309.3035
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.3035
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    2. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Philippe Aguilar & Cyril Coste & Hagen Kleinert & Jan Korbel, 2016. "Distributional Mellin calculus in $\mathbb{C}^n$, with applications to option pricing," Papers 1611.03239, arXiv.org, revised Nov 2016.
    2. Leila Khodayari & Mojtaba Ranjbar, 2017. "A Numerical Method to Approximate Multi-Asset Option Pricing Under Exponential Lévy Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 189-205, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    2. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    3. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    4. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.
    7. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    8. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    9. Luca Vincenzo Ballestra, 2018. "Fast and accurate calculation of American option prices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 399-426, November.
    10. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    11. Doriana Ruffino & Jonathan Treussard, 2006. "Lumps and Clusters in Duopolistic Investment Games: An Early Exercise Premium Approach," Boston University - Department of Economics - Working Papers Series WP2006-044, Boston University - Department of Economics.
    12. Andrew Ziogas & Carl Chiarella, 2003. "McKean’s Method applied to American Call Options on Jump-Diffusion Processes," Computing in Economics and Finance 2003 39, Society for Computational Economics.
    13. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    14. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    15. Li Chen & Guang Zhang, 2021. "Hermite Polynomial-based Valuation of American Options with General Jump-Diffusion Processes," Papers 2104.11870, arXiv.org.
    16. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    17. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2022. "The American put with finite‐time maturity and stochastic interest rate," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1170-1213, October.
    18. Pierangelo Ciurlia & Ilir Roko, 2005. "Valuation of American Continuous-Installment Options," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 143-165, February.
    19. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    20. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.3035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.