IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v18y2008i1p185-197.html
   My bibliography  Save this article

Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset

Author

Listed:
  • Xinfu Chen
  • John Chadam
  • Lishang Jiang
  • Weian Zheng

Abstract

We show that the optimal exercise boundary for the American put option with non‐dividend‐paying asset is convex. With this convexity result, we then give a simple rigorous argument providing an accurate asymptotic behavior for the exercise boundary near expiry.

Suggested Citation

  • Xinfu Chen & John Chadam & Lishang Jiang & Weian Zheng, 2008. "Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 185-197, January.
  • Handle: RePEc:bla:mathfi:v:18:y:2008:i:1:p:185-197
    DOI: 10.1111/j.1467-9965.2007.00328.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2007.00328.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2007.00328.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guy Barles & Julien Burdeau & Marc Romano & Nicolas Samsoen, 1995. "Critical Stock Price Near Expiration," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 77-95, April.
    2. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    3. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
    4. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    5. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    6. Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    2. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
    3. Daniel Sevcovic, 2008. "Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations," Papers 0805.0611, arXiv.org.
    4. Jonas Al-Hadad & Zbigniew Palmowski, 2020. "Perpetual American options with asset-dependent discounting," Papers 2007.09419, arXiv.org, revised Jan 2021.
    5. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    6. Dejun Xie, 2009. "A Steady State Solution to a Mortgage Pricing Problem," Papers 0909.5389, arXiv.org.
    7. Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
    8. Panagiota Daskalopoulos & Paul M. N. Feehan, 2011. "Existence, uniqueness, and global regularity for degenerate elliptic obstacle problems in mathematical finance," Papers 1109.1075, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    2. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    3. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    4. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    5. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    6. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    7. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    8. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    9. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    10. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    11. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    12. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    13. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    14. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    17. Yerkin Kitapbayev, 2019. "Closed form optimal exercise boundary of the American put option," Papers 1912.05438, arXiv.org, revised Jan 2021.
    18. Allegretto, Walter & Lin, Yanping & Yang, Hongtao, 2002. "A novel approach to the valuation of American options," Global Finance Journal, Elsevier, vol. 13(1), pages 17-28.
    19. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    20. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:18:y:2008:i:1:p:185-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.