IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v1y1994i2p165-194.html
   My bibliography  Save this article

Dynamic hedging portfolios for derivative securities in the presence of large transaction costs

Author

Listed:
  • Avellaneda Marco
  • ParaS Antonio

Abstract

We introduce a new class of strategies for hedging derivative securities in the presence of transaction costs assuming lognormal continuous-time prices for the underlying asset. We do not assume necessarily that the payoff is convex as in Leland's work or that transaction costs are small compared to the price changes between portfolio adjustments, as in Hoggardet al.'s work. The type of hedging strategy to be used depends upon the value of the Leland number A= √2/π (k/σ δt, where kis the round-trip transaction cost, σ is the volatility of the underlying asset, and δtis the time-lag between transactions. If A< 1 it is possible to implement modified Black-Scholes delta-hedging strategies, but not otherwise. We propose new hedging strategies that can be used with A≥ 1 to control effectively the hedging risk and transaction costs. These strategies are associated with the solution of a nonlinear obstacleproblem for a diffusion equation with volatility σA=σ √1+A. In these strategies, there are periods in which rehedging takes place after each interval δtand other periods in which a static strategy is required. The solution to the obstacle problem is simple to calculate, and closed-form solutions exist for many problems of practical interest.

Suggested Citation

  • Avellaneda Marco & ParaS Antonio, 1994. "Dynamic hedging portfolios for derivative securities in the presence of large transaction costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 165-194.
  • Handle: RePEc:taf:apmtfi:v:1:y:1994:i:2:p:165-194
    DOI: 10.1080/13504869400000010
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504869400000010
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504869400000010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    2. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    3. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    4. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    5. Tokarz, Krzysztof & Zastawniak, Tomasz, 2006. "American contingent claims under small proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 65-85, December.
    6. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    7. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    8. Nicole Branger & Antje Mahayni, 2011. "Tractable hedging with additional hedge instruments," Review of Derivatives Research, Springer, vol. 14(1), pages 85-114, April.
    9. Reiß, Ariane, 1997. "Option replication with large transactions costs," Tübinger Diskussionsbeiträge 106, University of Tübingen, School of Business and Economics.
    10. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    2. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    3. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    4. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    5. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    6. Kanne, Stefan & Korn, Olaf & Uhrig-Homburg, Marliese, 2016. "Stock Illiquidity, option prices, and option returns," CFR Working Papers 16-08, University of Cologne, Centre for Financial Research (CFR).
    7. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    8. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    9. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    10. Entrop, Oliver & Fischer, Georg, 2019. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-34-19, University of Passau, Faculty of Business and Economics.
    11. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    12. Raymond Chiang & John Okunev & Mark Tippett, 1997. "Stochastic interest rates, transaction costs, and immunizing foreign currency risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(5), pages 579-598, August.
    13. Zhao, Yonggan & Ziemba, William T., 2007. "Hedging errors with Leland's option model in the presence of transaction costs," Finance Research Letters, Elsevier, vol. 4(1), pages 49-58, March.
    14. Fischer, Georg, 2019. "How dynamic hedging affects stock price movements: Evidence from German option and certificate markets," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-35-19, University of Passau, Faculty of Business and Economics.
    15. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    16. Oliver Entrop & Georg Fischer, 2020. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1049-1071, July.
    17. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    18. John S. Ying & Joel S. Sternberg, 2005. "The Impact of Serial Correlation on Option Prices in a Non- Frictionless Environment: An Alternative Explanation for Volatility Skew," Working Papers 05-12, University of Delaware, Department of Economics.
    19. Fehle, Frank, 2004. "A note on transaction costs and the existence of derivatives markets," Journal of Economics and Business, Elsevier, vol. 56(1), pages 63-70.
    20. Atmaz, Adem & Basak, Suleyman, 2019. "Option prices and costly short-selling," Journal of Financial Economics, Elsevier, vol. 134(1), pages 1-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:1:y:1994:i:2:p:165-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.