IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v21y2011i23p1793-1808.html
   My bibliography  Save this article

Modelling and trading the Greek stock market with mixed neural network models

Author

Listed:
  • Christian L. Dunis
  • Jason Laws
  • Andreas Karathanassopoulos

Abstract

In this article, a mixed methodology that combines both the Autoregressive Moving Average Model (ARMA) and Neural Network Regression (NNR) models is proposed to take advantage of the unique strength of ARMA and NNR models in linear and nonlinear modelling. Experimental results with real data sets indicate that the combined model can be an effective way to improve forecasting accuracy achieved by either of the models used separately. The purpose for this article is to investigate the use of alternative novel neural network architectures when applied to the task of forecasting and trading the Athens Stock Exchange (ASE) 20 Greek Index using only autoregressive terms as inputs. This is done by benchmarking the forecasting performance of six different neural network designs representing a Higher Order Neural Network (HONN), a Recurrent Neural Network (RNN), a classic Multilayer Perceptron (MLP), a mixed-HONN, a mixed-RNN and a mixed-MP neural network with some traditional techniques, either statistical such as a an ARMA, or technical such as a Moving Average Convergence/Divergence (MACD) model, plus a naïve trading strategy. More specifically, the trading performance of all models is investigated in a forecast and trading simulation on ASE 20 time series over the period 2001 to 2008 using the last one and a half year for out-of-sample testing. We use the ASE 20 daily series as many financial institutions are ready to trade at this level and it is therefore possible to leave orders with a bank for business to be transacted on that basis. As it turns out, the mixed-HONNs do remarkably well and outperform all other models in a simple trading simulation exercise. However, when more sophisticated trading strategies using confirmation filters and leverage are applied, the mixed-MLP network produces better results and outperforms all other neural network and traditional statistical models in terms of annualized return. On the other hand, the Hybrid-HONNs shows a superiority after all sophisticated strategies, as filters and leverage, have been used in terms of annualized return as Dunis et al . (2010) mention in a recent paper.

Suggested Citation

  • Christian L. Dunis & Jason Laws & Andreas Karathanassopoulos, 2011. "Modelling and trading the Greek stock market with mixed neural network models," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1793-1808, December.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:23:p:1793-1808
    DOI: 10.1080/09603107.2011.577008
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09603107.2011.577008
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2011.577008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panayiotis C. Andreou & Chris Charalambous & Spiros H. Martzoukos, 2006. "Artificial Neural Network Enhanced Parametric Option Pricing," Computing in Economics and Finance 2006 118, Society for Computational Economics.
    2. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Higher order and recurrent neural architectures for trading the EUR/USD exchange rate," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 615-629.
    3. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Modelling and trading the EUR/USD exchange rate at the ECB fixing," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 541-560.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Zahangir Alam & Md. Noman Siddikee & Md. Masukujjaman, 2013. "Forecasting Volatility of Stock Indices with ARCH Model," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 4(2), pages 126-143, April.
    2. Christian L Dunis & Spiros D Likothanassis & Andreas S Karathanasopoulos & Georgios S Sermpinis & Konstantinos A Theofilatos, 2013. "A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading," Journal of Asset Management, Palgrave Macmillan, vol. 14(1), pages 52-71, February.
    3. Andreas Karathanasopoulos & Christian Dunis & Samer Khalil, 2016. "Modelling, forecasting and trading with a new sliding window approach: the crack spread example," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1875-1886, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
    2. Ortiz-Arango, Francisco & Cabrera-Llanos, Agustín I. & Venegas-Martínez, Francisco, 2014. "Euro Exchange Rate Forecasting with Differential Neural Networks with an Extended Tracking Procedure," MPRA Paper 57720, University Library of Munich, Germany.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. AsadUllah, Muhammad & Mujahid, Hira & I. Tabash, Mosab & Ayubi, Sharique & Sabri, Rabia, 2020. "Forecasting indian rupee/us dollar: arima, exponential smoothing, naïve, nardl, combination techniques," MPRA Paper 111150, University Library of Munich, Germany.
    5. Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
    6. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    7. Georgios Vasilakis & Konstantinos Theofilatos & Efstratios Georgopoulos & Andreas Karathanasopoulos & Spiros Likothanassis, 2013. "A Genetic Programming Approach for EUR/USD Exchange Rate Forecasting and Trading," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 415-431, December.
    8. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    9. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    10. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    11. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
    12. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    13. Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
    14. Zuzana Rowland & George Lazaroiu & Ivana Podhorská, 2020. "Use of Neural Networks to Accommodate Seasonal Fluctuations When Equalizing Time Series for the CZK/RMB Exchange Rate," Risks, MDPI, vol. 9(1), pages 1-21, December.
    15. Abdel Latif Abu Dalhoum & Mohammed Al-Rawi, 2019. "High-Order Neural Networks are Equivalent to Ordinary Neural Networks," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 228-228, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:23:p:1793-1808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.