IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2022i2p228.html
   My bibliography  Save this article

High-Order Neural Networks are Equivalent to Ordinary Neural Networks

Author

Listed:
  • Abdel Latif Abu Dalhoum
  • Mohammed Al-Rawi

Abstract

Equivalence of computational systems can assist in obtaining abstract systems, and thus enable better understanding of issues related their design and performance. For more than four decades, artificial neural networks have been used in many scientific applications to solve classification problems as well as other problems. Since the time of their introduction, multilayer feedforward neural network referred as Ordinary Neural Network (ONN), that contains only summation activation (Sigma) neurons, and multilayer feedforward High-order Neural Network (HONN), that contains Sigma neurons, and product activation (Pi) neurons, have been treated in the literature as different entities. In this work, we studied whether HONNs are mathematically equivalent to ONNs. We have proved that every HONN could be converted to some equivalent ONN. In most cases, one just needs to modify the neuronal transfer function of the Pi neuron to convert it to a Sigma neuron. The theorems that we have derived clearly show that the original HONN and its corresponding equivalent ONN would give exactly the same output, which means; they can both be used to perform exactly the same functionality. We also derived equivalence theorems for several other non-standard neural networks, for example, recurrent HONNs and HONNs with translated multiplicative neurons. This work rejects the hypothesis that HONNs and ONNs are different entities, a conclusion that might initiate a new research frontier in artificial neural network research.

Suggested Citation

  • Abdel Latif Abu Dalhoum & Mohammed Al-Rawi, 2019. "High-Order Neural Networks are Equivalent to Ordinary Neural Networks," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 228-228, February.
  • Handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:228
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/38336/38874
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/38336
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Modelling and trading the EUR/USD exchange rate at the ECB fixing," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 541-560.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    2. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    3. Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
    4. Christian L. Dunis & Jason Laws & Andreas Karathanassopoulos, 2011. "Modelling and trading the Greek stock market with mixed neural network models," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1793-1808, December.
    5. Ortiz-Arango, Francisco & Cabrera-Llanos, Agustín I. & Venegas-Martínez, Francisco, 2014. "Euro Exchange Rate Forecasting with Differential Neural Networks with an Extended Tracking Procedure," MPRA Paper 57720, University Library of Munich, Germany.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. AsadUllah, Muhammad & Mujahid, Hira & I. Tabash, Mosab & Ayubi, Sharique & Sabri, Rabia, 2020. "Forecasting indian rupee/us dollar: arima, exponential smoothing, naïve, nardl, combination techniques," MPRA Paper 111150, University Library of Munich, Germany.
    8. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    9. Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
    10. Carè, Rosella & Cumming, Douglas, 2024. "Technology and automation in financial trading: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 71(C).
    11. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    12. Georgios Vasilakis & Konstantinos Theofilatos & Efstratios Georgopoulos & Andreas Karathanasopoulos & Spiros Likothanassis, 2013. "A Genetic Programming Approach for EUR/USD Exchange Rate Forecasting and Trading," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 415-431, December.
    13. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.