IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v14y2004i4p221-231.html
   My bibliography  Save this article

Short patches of outliers, ARCH and volatility modelling

Author

Listed:
  • Philip Hans Franses
  • Dick van Dijk
  • Andre Lucas

Abstract

The (Generalized) AutoRegressive Conditional Heteroscedasticity [(G)ARCH] model is tested for daily data on 22 exchange rates and 13 stock market indices using the standard Lagrange Multiplier [LM] test for GARCH and a LM test that is resistant to patches of additive outliers. The data span two samples of five years ranging from 1986 to 1995. Using asymptotic arguments and Monte Carlo simulations, in which the empirical method is evaluated, it is shown that patches of outliers can have significant effects on test outcomes. The main empirical result is that spurious GARCH is found in about 40% of the cases, while in many other cases evidence of GARCH is found even though such sequences of extraordinary observations seem to be present.

Suggested Citation

  • Philip Hans Franses & Dick van Dijk & Andre Lucas, 2004. "Short patches of outliers, ARCH and volatility modelling," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 221-231.
  • Handle: RePEc:taf:apfiec:v:14:y:2004:i:4:p:221-231
    DOI: 10.1080/0960310042000201174
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0960310042000201174
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0960310042000201174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, John H. H., 1991. "A Lagrange multiplier test for GARCH models," Economics Letters, Elsevier, vol. 37(3), pages 265-271, November.
    2. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    3. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    4. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Benjamin M. Friedman & David I. Laibson, 1989. "Economic Implications of Extraordinary Movements in Stock Prices," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(2), pages 137-190.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amado Peir, 2016. "Changes in the Unconditional Variance and Autoregressive Conditional Heteroscedasticity," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1338-1343.
    2. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    3. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    5. L. Grossi & G. Morelli, 2006. "Robust volatility forecasts and model selection in financial time series," Economics Department Working Papers 2006-SE02, Department of Economics, Parma University (Italy).
    6. repec:hum:wpaper:sfb649dp2006-050 is not listed on IDEAS
    7. Beatriz Catalan & F. Javier Trivez, 2007. "Forecasting volatility in GARCH models with additive outliers," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 591-596.
    8. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2004. "Spurious And Hidden Volatility," Working Papers. Serie AD 2004-45, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    9. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
    11. Miralles-Quirós, José Luis & Daza-Izquierdo, Julio, 2015. "Do DOW returns really influence the intraday Spanish stock market behavior?," Research in International Business and Finance, Elsevier, vol. 33(C), pages 99-126.
    12. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    13. Kyrtsou, Catherine & Malliaris, Anastasios G., 2009. "The impact of information signals on market prices when agents have non-linear trading rules," Economic Modelling, Elsevier, vol. 26(1), pages 167-176, January.
    14. Par Sjolander, 2010. "A stationary unbiased finite sample ARCH-LM test procedure," Applied Economics, Taylor & Francis Journals, vol. 43(8), pages 1019-1033.
    15. Juncal Cunado Eizaguirre & Javier Gomez Biscarri & Fernando Perez de Gracia Hidalgo, 2009. "Financial liberalization, stock market volatility and outliers in emerging economies," Applied Financial Economics, Taylor & Francis Journals, vol. 19(10), pages 809-823.
    16. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    17. González-Sánchez, Mariano, 2021. "Is there a relationship between the time scaling property of asset returns and the outliers? Evidence from international financial markets," Finance Research Letters, Elsevier, vol. 38(C).
    18. Par Sjolander, 2009. "Are the Basel II requirements justified in the presence of structural breaks?," Applied Financial Economics, Taylor & Francis Journals, vol. 19(12), pages 985-998.
    19. Christos Avdoulas & Stelios Bekiros & Sabri Boubaker, 2018. "Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 307-333, March.
    20. Jose Luis Miralles-Marcelo & Jose Luis Miralles-Quiros & Maria del Mar Miralles-Quiros, 2010. "Intraday linkages between the Spanish and the US stock markets: evidence of an overreaction effect," Applied Economics, Taylor & Francis Journals, vol. 42(2), pages 223-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    5. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Franses, Ph.H.B.F. & van Dijk, D.J.C., 1997. "Do We Often Find ARCH Because Of Neglected Outliers?," Econometric Institute Research Papers EI 9706-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    8. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    9. E. Ruiz & M.A. Carnero & D. Pereira, 2004. "Effects of Level Outliers on the Identification and Estimation of GARCH Models," Econometric Society 2004 Australasian Meetings 21, Econometric Society.
    10. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    12. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    13. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
    14. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    16. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    17. Brooks, Robert D. & Davidson, Sinclair & Faff, Robert W., 1997. "An examination of the effects of major political change on stock market volatility: the South African experience," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 255-275, October.
    18. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:14:y:2004:i:4:p:221-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.