IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v43y2010i8p1019-1033.html
   My bibliography  Save this article

A stationary unbiased finite sample ARCH-LM test procedure

Author

Listed:
  • Par Sjolander

Abstract

Engle's (1982) Autoregressive Conditional Heteroscedasticity-Lagrange Multiplier (ARCH-LM) test is the undisputed standard test to detect ARCH. In this article, Monte Carlo (MC) simulations are used to demonstrate that the test's statistical size is biased in finite samples. Two complementing remedies to the related problems are proposed. One simple solution is to simulate new unbiased critical values for the ARCH-LM test. A second solution is based on the observation that for econometrics practitioners, detection of ARCH is generally followed by remedial modelling of this time-varying heteroscedasticity by the most general and robust model in the ARCH family; the Generalized ARCH (GARCH(1,1)) model. If the GARCH model's stationarity constraints are violated, as in fact is very often the case, obviously, we can conclude that ARCH-LM's detection of conditional heteroscedasticity has no or limited practical value. Therefore, formulated as a function of whether the GARCH model's stationarity constraints are satisfied or not, an unbiased and more relevant two-stage ARCH-LM test is specified. If the primary objectives of the study are to detect and remedy the problems of conditional heteroscedasticity, or to interpret GARCH parameters, the use of this article's new two-stage procedure, 2-Stage Unbiased ARCH-LM (2S-UARCH-LM), is strongly recommended.

Suggested Citation

  • Par Sjolander, 2010. "A stationary unbiased finite sample ARCH-LM test procedure," Applied Economics, Taylor & Francis Journals, vol. 43(8), pages 1019-1033.
  • Handle: RePEc:taf:applec:v:43:y:2010:i:8:p:1019-1033
    DOI: 10.1080/00036840802600046
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00036840802600046
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036840802600046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, John H. H., 1991. "A Lagrange multiplier test for GARCH models," Economics Letters, Elsevier, vol. 37(3), pages 265-271, November.
    2. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    3. Philip Hans Franses & Dick van Dijk & Andre Lucas, 2004. "Short patches of outliers, ARCH and volatility modelling," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 221-231.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Felix Chan & Michael McAleer, 2003. "Estimating smooth transition autoregressive models with GARCH errors in the presence of extreme observations and outliers," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 581-592.
    6. Brooks, Robert D. & Faff, Robert W. & Fry, Tim R. L., 2001. "GARCH modelling of individual stock data: the impact of censoring, firm size and trading volume," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 11(2), pages 215-222, June.
    7. Diana N. Weymark, 1999. "Heteroskedastic Exchange Rates and Time-Varying Optimal Intervention Rules," Canadian Journal of Economics, Canadian Economics Association, vol. 32(5), pages 1174-1190, November.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    10. Kim, Kiwhan & Schmidt, Peter, 1993. "Unit root tests with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 59(3), pages 287-300, October.
    11. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    12. Gregory, Allan W, 1989. "A Nonparametric Test for Autoregressive Conditional Heteroscedasticity: A Markov-Chain Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 107-115, January.
    13. Lee, John H H & King, Maxwell L, 1993. "A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 17-27, January.
    14. David Edgerton & Ghazi Shukur, 1999. "Testing autocorrelation in a system perspective testing autocorrelation," Econometric Reviews, Taylor & Francis Journals, vol. 18(4), pages 343-386.
    15. Hong, Yongmiao & Shehadeh, Ramsey D, 1999. "A New Test for ARCH Effects and Its Finite-Sample Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 91-108, January.
    16. Chao John C. & Chiao Chaoshin, 1998. "Testing the Expectations Theory of the Term Structure of Interest Rates Using Model-Selection Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    2. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    3. Till Strohsal & Enzo Weber, 2014. "Mean-variance cointegration and the expectations hypothesis," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1983-1997, November.
    4. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    5. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    7. Param Silvapulle & Robert Pereira & J.H.H. Lee, 1993. "The Impact of Inflation Rate Announcements on the Interest Rate Volatility: Australian Evidence," Working Papers 1993.26, School of Economics, La Trobe University.
    8. Shaun Bond & Stephen Satchell, 2006. "Asymmetry and downside risk in foreign exchange markets," The European Journal of Finance, Taylor & Francis Journals, vol. 12(4), pages 313-332.
    9. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    10. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
    11. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    12. Brooks, Robert D. & Davidson, Sinclair & Faff, Robert W., 1997. "An examination of the effects of major political change on stock market volatility: the South African experience," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 255-275, October.
    13. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    15. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    16. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    17. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    18. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    19. Peter M Robinson & Paolo Zaffaroni, 2005. "Pseudo-Maximum Likelihood Estimation of ARCH(8) Models," STICERD - Econometrics Paper Series 495, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 973-1013, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:43:y:2010:i:8:p:1019-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.