IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v72y2018i3p265-277.html
   My bibliography  Save this article

The Landscape of Causal Inference: Perspective From Citation Network Analysis

Author

Listed:
  • Weihua An
  • Ying Ding

Abstract

Causal inference is a fast-growing multidisciplinary field that has drawn extensive interests from statistical sciences and health and social sciences. In this article, we gather comprehensive information on publications and citations in causal inference and provide a review of the field from the perspective of citation network analysis. We provide descriptive analyses by showing the most cited publications, the most prolific and the most cited authors, and structural properties of the citation network. Then, we examine the citation network through exponential random graph models (ERGMs). We show that both technical aspects of the publications (e.g., publication length, time and quality) and social processes such as homophily (the tendency to cite publications in the same field or with shared authors), cumulative advantage, and transitivity (the tendency to cite references’ references), matter for citations. We also provide specific analysis of citations among the top authors in the field and present a ranking and clustering of the authors. Overall, our article reveals new insights into the landscape of the field of causal inference and may serve as a case study for analyzing citation networks in a multidisciplinary field and for fitting ERGMs on big networks. Supplementary materials for this article are available online.

Suggested Citation

  • Weihua An & Ying Ding, 2018. "The Landscape of Causal Inference: Perspective From Citation Network Analysis," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 265-277, July.
  • Handle: RePEc:taf:amstat:v:72:y:2018:i:3:p:265-277
    DOI: 10.1080/00031305.2017.1360794
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2017.1360794
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2017.1360794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Tai-Quan, 2015. "Assortative mixing, preferential attachment, and triadic closure: A longitudinal study of tie-generative mechanisms in journal citation networks," Journal of Informetrics, Elsevier, vol. 9(2), pages 250-262.
    2. Small, Dylan S & Rosenbaum, Paul R, 2008. "War and Wages," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 924-933.
    3. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    4. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    5. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    6. Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
    7. Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    11. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    12. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    13. A. James O'Malley & Felix Elwert & J. Niels Rosenquist & Alan M. Zaslavsky & Nicholas A. Christakis, 2014. "Estimating peer effects in longitudinal dyadic data using instrumental variables," Biometrics, The International Biometric Society, vol. 70(3), pages 506-515, September.
    14. An, Weihua & Wang, Xuefu, 2016. "LARF: Instrumental Variable Estimation of Causal Effects through Local Average Response Functions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(c01).
    15. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    16. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    17. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    18. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
    2. Liu, Meijun & Hu, Xiao, 2021. "Will collaborators make scientists move? A Generalized Propensity Score analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    3. Manajit Chakraborty & Maksym Byshkin & Fabio Crestani, 2020. "Patent citation network analysis: A perspective from descriptive statistics and ERGMs," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    3. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    4. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    5. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    8. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    11. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    12. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    13. Lokossou, Jourdain & Arouna, Aminou & Diagne, Aliou & Biaou, Gauthier, 2015. "Gender differential Impact of NERICA adoption on Total Factor Productivity: evidence from Benin Republic," 2015 Conference, August 9-14, 2015, Milan, Italy 212056, International Association of Agricultural Economists.
    14. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    15. Vladimir Atanasov & Bernard Black, 2021. "The Trouble with Instruments: The Need for Pretreatment Balance in Shock-Based Instrumental Variable Designs," Management Science, INFORMS, vol. 67(2), pages 1270-1302, February.
    16. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    17. Nguezet, Paul Martin Dontsop & Diagne, Aliou & Okoruwa, Victor Olusegun & Ojehomon, Vivian, 2011. "Impact of Improved Rice Technology (NERICA varieties) on Income and Poverty among Rice Farming Households in Nigeria: A Local Average Treatment Effect (LATE) Approach," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(3), pages 1-25.
    18. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
    19. Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.
    20. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:72:y:2018:i:3:p:265-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.