IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i4d10.1007_s11269-023-03454-8.html
   My bibliography  Save this article

Convolutional Neural Network- ANN- E (Tanh): A New Deep Learning Model for Predicting Rainfall

Author

Listed:
  • Mahdie Afshari Nia

    (University of Kashan)

  • Fatemeh Panahi

    (University of Kashan)

  • Mohammad Ehteram

    (Semnan University)

Abstract

The prediction of rainfall is essential for monitoring droughts and floods. The purpose of this paper is to develop a deep learning model for predicting monthly rainfall. The new model is used to predict rainfall in the Kashan plain of Iran. This study combines a deep learning model with an artificial neural network (ANN) model to predict rainfall. In this study, a convolutional neural network (CONV) is used as a deep learning model. The paper also introduces a new activation function called E-Tanh to develop ANN models. The new model has two main advantages. The model automatically determines key features. In addition, the new activation function can enhance the precision of ANN models. Lagged rainfall values are inserted into the models to predict rainfall. This study uses a bat optimization algorithm to choose inputs. At the training level, the mean absolute percentage errors (MAPES) of CONV-ANN-ANN-E-Tanh, CONV, and ANN-E-Tanh were 0.5%, 1%, and 2%, respectively. At the testing level, the MAPEs of CONV-ANN -E-Tanh, CONV, and ANN-E-Tanh were 1%, 3%, and 4%, respectively. The E-Tanh performed better than other activation functions based on error function values. Also, the CONV-ANN-E-Tanh can reduce CPU time. Our results show that the new hybrid model is a reliable tool for simulating complex phenomena.

Suggested Citation

  • Mahdie Afshari Nia & Fatemeh Panahi & Mohammad Ehteram, 2023. "Convolutional Neural Network- ANN- E (Tanh): A New Deep Learning Model for Predicting Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1785-1810, March.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03454-8
    DOI: 10.1007/s11269-023-03454-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03454-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03454-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Qiangda & Dong, Ning & Zhang, Jie, 2021. "An enhanced adaptive bat algorithm for microgrid energy scheduling," Energy, Elsevier, vol. 232(C).
    2. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    5. Radhikesh Kumar & Maheshwari Prasad Singh & Bishwajit Roy & Afzal Hussain Shahid, 2021. "A Comparative Assessment of Metaheuristic Optimized Extreme Learning Machine and Deep Neural Network in Multi-Step-Ahead Long-term Rainfall Prediction for All-Indian Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1927-1960, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Ehteram & Ali Najah Ahmed & Zohreh Sheikh Khozani & Ahmed El-Shafie, 2023. "Convolutional Neural Network -Support Vector Machine Model-Gaussian Process Regression: A New Machine Model for Predicting Monthly and Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3631-3655, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ehteram & Ali Najah Ahmed & Zohreh Sheikh Khozani & Ahmed El-Shafie, 2023. "Convolutional Neural Network -Support Vector Machine Model-Gaussian Process Regression: A New Machine Model for Predicting Monthly and Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3631-3655, July.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    4. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    5. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    6. Zhang, Guodao & Ge, Yisu & Pan, Xiaotian & Zheng, Yun & Yang, Yanhong, 2023. "Hybrid robust-stochastic multi-objective optimization of combined cooling, heating, hydrogen and power-based microgrids," Energy, Elsevier, vol. 274(C).
    7. Ge, Dongdong & Jin, Guiyang & Wang, Jianqiang & Zhang, Zhendong, 2024. "A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).
    8. Upasana Lakhina & Nasreen Badruddin & Irraivan Elamvazuthi & Ajay Jangra & Truong Hoang Bao Huy & Josep M. Guerrero, 2023. "An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids," Mathematics, MDPI, vol. 11(9), pages 1-24, April.
    9. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    10. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    11. Ramesh Murlidhar Bhatawdekar & Radhikesh Kumar & Mohanad Muayad Sabri Sabri & Bishwajit Roy & Edy Tonnizam Mohamad & Deepak Kumar & Sangki Kwon, 2023. "Estimating Flyrock Distance Induced Due to Mine Blasting by Extreme Learning Machine Coupled with an Equilibrium Optimizer," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    12. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    13. Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
    14. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    15. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    16. Trung Duc Tran & Vinh Ngoc Tran & Jongho Kim, 2021. "Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    17. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    18. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    19. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    20. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03454-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.