IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i10d10.1007_s10668-021-01949-1.html
   My bibliography  Save this article

Model coupling approach for daily runoff simulation in Hamp Pandariya catchment of Chhattisgarh state in India

Author

Listed:
  • Gaurav Singh

    (ICAR-Indian Institute of Soil and Water Conservation,, Research Centre-Vasad)

  • A. R. S. Kumar

    (National Institute of Hydrology)

  • R. K. Jaiswal

    (National Institute of Hydrology)

  • Surjeet Singh

    (National Institute of Hydrology)

  • R. M. Singh

    (Banaras Hindu University)

Abstract

Runoff estimation is of immense importance in hydrological analysis for water resource planning and management. The developing countries cannot afford to establish a large number of gauging sites due to huge initial and operating expenditures. Hydrological modelling is an alternative solution to simulate the catchment response to extreme events under climate change for taking preventive measures. The hydrological models have their own leads and constraints, so because of limited hydrological data availability of the catchment, wavelet neural network (WNN), artificial neural network, adaptive neuro-fuzzy inference system, and Mike-11 Nedbor Afstromnings models were used in this study. These models were calibrated and validated using daily rainfall and runoff observations taken at Hamp Pandariya gauging station on Hamp river in the Chhattisgarh state of India. A comparative study of these models was carried out to investigate their performance, efficiency, and suitability for daily runoff simulation in Hamp Pandariya catchment and found suitable in simulating the hydrological response of the catchment and predicting runoff with a high degree of accuracy. The performance of these models was evaluated and compared with the aid of multiple goodness of fit criteria including coefficient of determinations (r2), Nash–Sutcliffe model efficiency index (NS), root mean square error, and water balance for model calibration and validation. These parameters indicated good agreement between observed and simulated runoff in terms of time to peak, discharge rate, daily and accumulated runoff volume, and shape of the hydrograph. The WNN was found the most appropriate model for future application due to Nash–Sutcliffe efficiency (NS) of 97% and 98% in calibration and validation, respectively, and the coefficient of determination as 99% both in calibration and validation.

Suggested Citation

  • Gaurav Singh & A. R. S. Kumar & R. K. Jaiswal & Surjeet Singh & R. M. Singh, 2022. "Model coupling approach for daily runoff simulation in Hamp Pandariya catchment of Chhattisgarh state in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12311-12339, October.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01949-1
    DOI: 10.1007/s10668-021-01949-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01949-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01949-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    2. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    3. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    4. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    2. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    5. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    6. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    7. Mohanad S. Al-Musaylh & Ravinesh C. Deo & Yan Li, 2020. "Electrical Energy Demand Forecasting Model Development and Evaluation with Maximum Overlap Discrete Wavelet Transform-Online Sequential Extreme Learning Machines Algorithms," Energies, MDPI, vol. 13(9), pages 1-19, May.
    8. Yan Zhou & Zhongmin Liang & Binquan Li & Yixin Huang & Kai Wang & Yiming Hu, 2021. "Seamless Integration of Rainfall Spatial Variability and a Conceptual Hydrological Model," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    9. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    10. Amir Molajou & Vahid Nourani & Abbas Afshar & Mina Khosravi & Adam Brysiewicz, 2021. "Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2369-2384, June.
    11. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    12. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    13. Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
    14. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    15. Trung Duc Tran & Vinh Ngoc Tran & Jongho Kim, 2021. "Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    16. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    17. Yixiang Sun & Deshan Tang & Yifei Sun & Qingfeng Cui, 2016. "Comparison of a fuzzy control and the data-driven model for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 827-844, June.
    18. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    19. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    20. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01949-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.