IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i2d10.1007_s11269-022-03404-w.html
   My bibliography  Save this article

Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map

Author

Listed:
  • Hedi Mahmoudpour

    (University of Guilan)

  • Somaye Janatrostami

    (University of Guilan)

  • Afshin Ashrafzadeh

    (University of Guilan)

Abstract

Unplanned and excessive utilization of groundwater increases the risk of seawater intrusion in coastal areas. Therefore, water quality management and monitoring in these areas are significantly important. For designing a monitoring network, the least number of monitoring wells with the optimal spatial distribution should select due to economic considerations. In this study, the optimal monitoring network with the minimum number of wells was selected in the coastal aquifer of Talesh County by considering the aquifer vulnerability maps and assessing the accuracy of the designed monitoring network. Accordingly, the aquifer vulnerability map was prepared using the modified GALDIT index, and then a genetic algorithm was used for optimal search in the monitoring network. The optimization model simultaneously analyzed three objectives: (1) to maximize the correlation between the vulnerability index and the EC value, (2) to minimize the number of monitoring wells, and (3) to maximize the Nash-Sutcliff coefficient that indicates the goodness of fit between the distribution of calculated EC in the existing monitoring network and the new network. The three objectives were integrated into one objective function by applying the weight coefficient w for economic reasons, and then the various weights were assessed. The results showed that the optimal solution selection significantly depended on determining the weight coefficient, and the best weight coefficient was selected by taking the most balanced solution into account according to the vulnerability index and the accuracy of the monitoring network. Satisfied predictions were achieved in both the optimization and the validation steps. Moreover, due to the qualitative and quantitative changes in groundwater in the long term, it should be assessed and redesigned the groundwater quality monitoring network periodically for the monitoring network to be effective in planning and applying methods for improving groundwater quality.

Suggested Citation

  • Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:2:d:10.1007_s11269-022-03404-w
    DOI: 10.1007/s11269-022-03404-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03404-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03404-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohadeseh Kavusi & Abbas Khashei Siuki & Mahdi Dastourani, 2020. "Optimal Design of Groundwater Monitoring Network Using the Combined Election-Kriging Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2503-2516, June.
    2. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    3. Y. Mogheir & J. de Lima & V. Singh, 2009. "Entropy and Multi-Objective Based Approach for Groundwater Quality Monitoring Network Assessment and Redesign," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1603-1620, June.
    4. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    5. Sreenivasulu Chadalavada & Bithin Datta, 2008. "Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 651-670, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Li & Wenfeng Du, 2024. "Enhanced Methods for Evaluating Water-inrush Risk from Underlying Aquifers: Incorporating Dynamic Weight Theory and Uncertainty Analysis Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4615-4631, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    2. Juan Esquivel & Guillermo Morales & María Esteller, 2015. "Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3175-3194, July.
    3. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    4. Bithin Datta & Dibakar Chakrabarty & Anirban Dhar, 2009. "Optimal Dynamic Monitoring Network Design and Identification of Unknown Groundwater Pollution Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2031-2049, August.
    5. Dickson Abdul-Wahab & Dickson Adomako & Gibrilla Abass & Dennis K. Adotey & Geophrey Anornu & Samuel Ganyaglo, 2021. "Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5297-5315, April.
    6. N. Mondal & V. Singh & S. Ahmed, 2012. "Entropy-Based Approach for Assessing Natural Recharge in Unconfined Aquifers from Southern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2715-2732, July.
    7. Manish Jha & Bithin Datta, 2014. "Linked Simulation-Optimization based Dedicated Monitoring Network Design for Unknown Pollutant Source Identification using Dynamic Time Warping Distance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4161-4182, September.
    8. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    9. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    10. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    11. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    12. Xinkang Wang & Changlai Xiao & Xiujuan Liang & Mingqian Li, 2022. "Groundwater Quality Assessment in the Northern Part of Changchun City, Northeast China, Using PIG and Two Improved PIG Methods," IJERPH, MDPI, vol. 19(15), pages 1-17, August.
    13. Shokoufeh Pourshahabi & Mohammad Reza Nikoo & Ehsan Raei & Jan Franklin Adamowski, 2018. "An Entropy-Based Approach to Fuzzy Multi-objective Optimization of Reservoir Water Quality Monitoring Networks Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4425-4443, October.
    14. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    15. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    16. Lior Netzer & Noam Weisbrod & Daniel Kurtzman & Ahmed Nasser & Ellen Graber & Daniel Ronen, 2011. "Observations on Vertical Variability in Groundwater Quality: Implications for Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1315-1324, March.
    17. Shokoufeh Pourshahabi & Nasser Talebbeydokhti & Gholamreza Rakhshandehroo & Mohammad Reza Nikoo, 2018. "Spatio-Temporal Multi-Criteria Optimization of Reservoir Water Quality Monitoring Network Using Value of Information and Transinformation Entropy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3489-3504, August.
    18. Bithin Datta & Om Prakash & Sean Campbell & Gerry Escalada, 2013. "Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4959-4976, November.
    19. Ruiliang Jia & Jinlong Zhou & Yinzhu Zhou & Qiao Li & Yexin Gao, 2014. "A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    20. Anirban Dhar & Rajvardhan Patil, 2012. "Multiobjective Design of Groundwater Monitoring Network Under Epistemic Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1809-1825, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:2:d:10.1007_s11269-022-03404-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.