IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i12p4161-4182.html
   My bibliography  Save this article

Linked Simulation-Optimization based Dedicated Monitoring Network Design for Unknown Pollutant Source Identification using Dynamic Time Warping Distance

Author

Listed:
  • Manish Jha
  • Bithin Datta

Abstract

Implementation of monitoring strategy for increasing the efficiency of groundwater pollutant source characterization is often necessary, especially when only inadequate and arbitrary concentration measurement data are initially available. Two main parameters that need to be estimated for efficient and accurate characterization of groundwater pollution sources are: location of the source and the time when the source became active. Complexities involved with the explicit estimation of the time of start and source activity have not been addressed so far in previous studies. The main complexity arises due to the fact that the spatial location and time of activity are inter-related. Therefore, specifying one and solving for the other simplifies the source characterization problem. Hence, in this study, both the source location and time of initiation are treated as unknowns. The developed methodology uses dynamic time warping distance in the linked simulation-optimization model to address some complex issues in designing a monitoring network to efficiently estimate source characteristics including the time of first activity of unknown groundwater source. Performance of the developed methodology is evaluated on illustrative contaminated aquifer. These evaluation results demonstrate the potential use of the developed methodology. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Manish Jha & Bithin Datta, 2014. "Linked Simulation-Optimization based Dedicated Monitoring Network Design for Unknown Pollutant Source Identification using Dynamic Time Warping Distance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4161-4182, September.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:12:p:4161-4182
    DOI: 10.1007/s11269-014-0737-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0737-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0737-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bithin Datta & Om Prakash & Sean Campbell & Gerry Escalada, 2013. "Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4959-4976, November.
    2. Raj Singh & Bithin Datta, 2007. "Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 557-572, March.
    3. Pooran Mahar & Bithin Datta, 2000. "Identification of Pollution Sources in Transient Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 209-227, June.
    4. Sreenivasulu Chadalavada & Bithin Datta, 2008. "Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 651-670, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Shourian & S. M. Javad Davoudi, 2017. "Optimum Pumping Well Placement and Capacity Design for a Groundwater Lowering System in Urban Areas with the Minimum Cost Objective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4207-4225, October.
    2. Triptimoni Borah & Rajib Kumar Bhattacharjya, 2016. "Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-Optimization Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5163-5176, November.
    3. L. Guneshwor & T. I. Eldho & A. Vinod Kumar, 2018. "Identification of Groundwater Contamination Sources Using Meshfree RPCM Simulation and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1517-1538, March.
    4. Divya Srivastava & Raj Singh, 2015. "Groundwater System Modeling for Simultaneous Identification of Pollution Sources and Parameters with Uncertainty Characterization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4607-4627, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bithin Datta & Dibakar Chakrabarty & Anirban Dhar, 2009. "Optimal Dynamic Monitoring Network Design and Identification of Unknown Groundwater Pollution Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2031-2049, August.
    2. Triptimoni Borah & Rajib Kumar Bhattacharjya, 2016. "Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-Optimization Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5163-5176, November.
    3. L. Guneshwor & T. I. Eldho & A. Vinod Kumar, 2018. "Identification of Groundwater Contamination Sources Using Meshfree RPCM Simulation and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1517-1538, March.
    4. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    5. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    6. Michael Saah Hayford & Bithin Datta, 2021. "Source Characterization of Multiple Reactive Species at an Abandoned Mine Site Using a Groundwater Numerical Simulation Model and Optimization Models," IJERPH, MDPI, vol. 18(9), pages 1-42, April.
    7. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    8. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    9. Raj Singh & Bithin Datta, 2007. "Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 557-572, March.
    10. Divya Srivastava & Raj Singh, 2015. "Groundwater System Modeling for Simultaneous Identification of Pollution Sources and Parameters with Uncertainty Characterization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4607-4627, October.
    11. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    12. K. Papapetridis & E. Paleologos, 2012. "Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2673-2688, July.
    13. Dan Yin & Longcang Shu & Xunhong Chen & Zhenlong Wang & Mokhatar Mohammed, 2011. "Assessment of Sustainable Yield of Karst Water in Huaibei, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 287-300, January.
    14. Bithin Datta & Om Prakash & Sean Campbell & Gerry Escalada, 2013. "Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4959-4976, November.
    15. Anirban Dhar & Rajvardhan Patil, 2012. "Multiobjective Design of Groundwater Monitoring Network Under Epistemic Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1809-1825, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:12:p:4161-4182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.