IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00815-w.html
   My bibliography  Save this article

Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana

Author

Listed:
  • Dickson Abdul-Wahab

    (University of Ghana)

  • Dickson Adomako

    (University of Ghana
    Ghana Space Science and Technology Institute)

  • Gibrilla Abass

    (National Nuclear Research Institute, GAEC)

  • Dennis K. Adotey

    (University of Ghana)

  • Geophrey Anornu

    (Kwame Nkrumah University of Science and Technology (KNUST))

  • Samuel Ganyaglo

    (National Nuclear Research Institute, GAEC)

Abstract

The Lower Anayari Catchment (LAC) groundwater system of the upper east region contributes substantially to the populace’s socioeconomic development. LAC is well distinguished for intense farming activities. This study sought to assess the quality and processes/activities that impact on the groundwater chemistry in the catchment. Forty-one (41) samples, comprising boreholes and hand-dug wells were sampled from six (6) prime communities (Kulwase, Manyoro, Mirigu, Nakolo, Paga and Pungu) for physico-chemical and stable isotopes analysis. Hydrochemistry, ionic ratios, principal component analysis (PCA), geostatistics and stable isotopes (δ18O and δ2H) approaches were applied to construe the hydrogeochemistry of the groundwater system. Utilizing PCA and geostatistics, two factors controlling groundwater quality were depicted as; (a) V1- the dissolution of silicate minerals and (b) V2- agrochemicals/domestic waste. Piper Trilinear plot identified two hydrochemical facies, namely, Ca-Na-HCO3 and Na-Ca-HCO3. Cation exchange processes and silicate weathering/dissolutions are main drivers of the groundwater chemistry. Stable isotopes suggests groundwater in LAC is mainly of meteoric origin and a well-mixed system. However, few deviations of groundwater isotopic signatures from GMWL were observed suggesting evaporation before recharge or recharge occurring from an enriched source.

Suggested Citation

  • Dickson Abdul-Wahab & Dickson Adomako & Gibrilla Abass & Dennis K. Adotey & Geophrey Anornu & Samuel Ganyaglo, 2021. "Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5297-5315, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00815-w
    DOI: 10.1007/s10668-020-00815-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00815-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00815-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Chitsazan & N. Aghazadeh & Y. Mirzaee & Y. Golestan, 2019. "Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia city, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 331-351, February.
    2. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    2. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    3. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    4. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    5. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    6. Juan Esquivel & Guillermo Morales & María Esteller, 2015. "Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3175-3194, July.
    7. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    8. P. Mohana & P. M. Velmurugan, 2021. "Evaluation and characterization of groundwater using chemometric and spatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 309-330, January.
    9. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    10. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    11. Puja Chowdhury & Bhabani Prasad Mukhopadhyay & Siperna Nayak & Amit Bera, 2022. "Hydro-chemical characterization of groundwater and evaluation of health risk assessment for fluoride contamination areas in the eastern blocks of Purulia district, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11320-11347, September.
    12. Ruiliang Jia & Jinlong Zhou & Yinzhu Zhou & Qiao Li & Yexin Gao, 2014. "A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    13. Ziwen Zhou & Zhifang Zhou & Haiyang Xu & Mingwei Li, 2020. "The Hydrochemical and Isotopic Evolution of the Surface Water and Groundwater for Impoundment in the Xiluodu Reservoir, Jinsha River, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    14. Aminreza Neshat & Biswajeet Pradhan, 2015. "An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 543-563, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00815-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.