IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i15d10.1007_s11269-022-03345-4.html
   My bibliography  Save this article

Low-Impact Optimal Operation of a Cascade Sluice-Reservoir System for Water-Society-Ecology Trade-Offs

Author

Listed:
  • Xiang Zhang

    (Wuhan University
    Wuhan University)

  • Liangkun Deng

    (Wuhan University
    Wuhan University)

  • Bi Wu

    (Changjiang Water Resources Protection Institute)

  • Shichun Gao

    (Wuhan University
    Wuhan University)

  • Yi Xiao

    (Wuhan University
    Wuhan University)

Abstract

As an important measure used to balance the trade-offs of industrial, domestic, and ecological water use sectors, the low-impact optimal operation model of the cascade sluice-reservoir system (CSRS) has developed into an international concern. Limited by insufficient water storage and a deteriorating ecological environment, the actual operation ability (AOA) deviates from the originally planned ability and cannot function effectively as expected. However, the focus on the quantification of the AOA of the CSRS and its applications in water resources allocation have not received sufficient attention. This paper first constructed a multi-indicator evaluation system of the AOA consisting of water quantity, water quality, water ecology, engineering, and socioeconomic elements. Second, based on the quantified AOA, a multi-objective optimal operation model of the CSRS was proposed to lower water deficiency and pollutant loads and to reduce the negative impact on the social economy, water ecology and environment. The Shaying River basin (SRB), a human-altered basin with fierce water use competition, was selected as the study area. The results indicate that (1) the elements of water quality and water ecology are the main factors limiting the AOA. Moreover, the evaluation system is able to accurately demonstrate the evolution of the water management policies. (2) The low-impact optimal operation scheme has a stronger superiority with less water shortages in both city units and ecology, especially when the inflow is less and the benefits of agricultural, industrial and domestic water use are prioritized. The model contributes to the knowledge of water-society-ecology trade-offs.

Suggested Citation

  • Xiang Zhang & Liangkun Deng & Bi Wu & Shichun Gao & Yi Xiao, 2022. "Low-Impact Optimal Operation of a Cascade Sluice-Reservoir System for Water-Society-Ecology Trade-Offs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6131-6148, December.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:15:d:10.1007_s11269-022-03345-4
    DOI: 10.1007/s11269-022-03345-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03345-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03345-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    3. Heyuan You & Deshao Zhou & Shenyan Wu & Xiaowei Hu & Chenmeng Bie, 2020. "Social Deprivation and Rural Public Health in China: Exploring the Relationship Using Spatial Regression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 843-864, February.
    4. Jiqing Li & Jing Huang & Pengteng Liang & Jay R. Lund, 2021. "Fuzzy Representation of Environmental Flow in Multi-Objective Risk Analysis of Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2845-2861, July.
    5. Ding, Ziyu & Fang, Guohua & Wen, Xin & Tan, Qiaofeng & Huang, Xianfeng & Lei, Xiaohui & Tian, Yu & Quan, Jin, 2018. "A novel operation chart for cascade hydropower system to alleviate ecological degradation in hydrological extremes," Ecological Modelling, Elsevier, vol. 384(C), pages 10-22.
    6. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burhan Yildiz & Mehtap Kose Ulukok & Vali Bashiry, 2023. "Bi-Attempted Base Optimization Algorithm on Optimization of Hydrosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3585-3597, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    2. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    4. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    5. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    6. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    7. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    8. Jiahong Li & Xiaohui Lei & Yu Qiao & Aiqing Kang & Peiru Yan, 2020. "The Water Status in China and an Adaptive Governance Frame for Water Management," IJERPH, MDPI, vol. 17(6), pages 1-19, March.
    9. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    10. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    11. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    13. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    14. Chuenchum, Pavisorn & Xu, Mengzhen & Tang, Wenzhe, 2023. "Assessment of reservoir trapping efficiency and hydropower production under future projections of sedimentation in Lancang–Mekong River Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    16. Dan Yan & Saskia E. Werners & He Qing Huang & Fulco Ludwig, 2016. "Identifying and Assessing Robust Water Allocation Plans for Deltas Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5421-5435, November.
    17. Jia, Jinda & Shan, Xiaobiao & Upadrashta, Deepesh & Xie, Tao & Yang, Yaowen & Song, Rujun, 2020. "An asymmetric bending-torsional piezoelectric energy harvester at low wind speed," Energy, Elsevier, vol. 198(C).
    18. Boran Zhu & Junqiang Lin & Yi Liu & Di Zhang & Qidong Peng & Yufeng Ren & Jiejie Chen & Yi Xu, 2024. "Multi-Risk Interaction Analysis of Cascade Hydropower Stations Based on System Dynamics Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 45-62, January.
    19. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    20. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:15:d:10.1007_s11269-022-03345-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.