IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i13d10.1007_s11269-022-03288-w.html
   My bibliography  Save this article

System Archetypes Underlying Formal-Informal Urban Water Supply Dynamics

Author

Listed:
  • Rakhshinda Bano

    (Edith Cowan University)

  • Mehdi Khiadani

    (Edith Cowan University)

  • Yong Sebastian Nyam

    (University of the Free State)

Abstract

Contrary to developed countries, developing countries have been observed to have an increased reliance on a diversity of water supply options to meet their daily demands, where formal supply systems are incapable of fulfilling the daily needs of consumers. In filling a demand-supply gap, informal supply systems are increasingly being associated with issues of long-term sustainability, higher consumer cost, and inequity. Emerging formal-informal dynamics in developing countries require a thorough understanding of complex human-water interactions for policy direction, in order to best support the advancement of urban water sustainability. Accordingly, system archetypes offer a platform to explain the behaviors of complex systems. This paper identifies common system archetypes that define urban waterscapes in the developing world. In this way, Causal Loop Diagrams (CLDs) are used to present relationships and identify common archetypes that define the complexity of urban water supply systems in Hyderabad, Pakistan. These archetypes include ‘fixes that fail’, ‘shifting the burden’, ‘limits to growth/success’ and ‘growth and underinvestment’. These archetypes demonstrate that increases in formal infrastructure capacity and the number of informal suppliers to increase supply reliability are symptomatic solutions, restrained by financial and technical resources, and thus have unintended consequences. Further, a number of policy instruments are discussed as leverage points to achieve financial sustainability of formal systems. This paper emphasizes the need of a policy framework for informal supply system in national and regional water policies to ensure its service reliability as a short to medium term solution.

Suggested Citation

  • Rakhshinda Bano & Mehdi Khiadani & Yong Sebastian Nyam, 2022. "System Archetypes Underlying Formal-Informal Urban Water Supply Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4995-5010, October.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03288-w
    DOI: 10.1007/s11269-022-03288-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03288-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03288-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    2. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    3. Wutich, Amber & Beresford, Melissa & Carvajal, Cinthia, 2016. "Can Informal Water Vendors Deliver on the Promise of A Human Right to Water? Results From Cochabamba, Bolivia," World Development, Elsevier, vol. 79(C), pages 14-24.
    4. Vladimír Bureš & Fridrich Racz, 2016. "Application of system archetypes in practice: an underutilised pathway to better managerial performance," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(6), pages 1081-1096, November.
    5. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    6. Sonia Ferdous Hoque & Dennis Wichelns, 2013. "State-of-the-art review: designing urban water tariffs to recover costs and promote wise use," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(3), pages 472-491, September.
    7. Shah, Tushaar, 2007. "Issues in reforming informal water economies of low-income countries: examples from India and elsewhere," IWMI Books, Reports H040688, International Water Management Institute.
    8. Shah, Tushaar, 2007. "Issues in reforming informal water economies of low-income countries: examples from India and elsewhere," Book Chapters,, International Water Management Institute.
    9. Batsirai Majuru & Marc Suhrcke & Paul R. Hunter, 2016. "How Do Households Respond to Unreliable Water Supplies? A Systematic Review," IJERPH, MDPI, vol. 13(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Yazdanparast & Mehdi Ghorbani & Ali Salajegheh & Reza Kerachian, 2023. "Development of a Water Security Conceptual Model by Combining Human-Environmental System (HES) and System Dynamic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1695-1709, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshi, Nupur & Gerlak, Andrea K. & Hannah, Corrie & Lopus, Sara & Krell, Natasha & Evans, Tom, 2023. "Water insecurity, housing tenure, and the role of informal water services in Nairobi’s slum settlements," World Development, Elsevier, vol. 164(C).
    2. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    3. Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    4. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    5. van Koppen, Barbara & Smits, Stef & Moriarty, Patrick & Penning de Vries, Frits W.T. & Mikhail, Monique & Boelee, Eline, 2009. "Climbing the water ladder: multiple-use water services for poverty reduction," IWMI Books, International Water Management Institute, number 137955.
    6. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    7. Malik, R.P.S. & Giordano, Meredith & Sharma, Vivek, 2014. "Examining farm-level perceptions, costs, and benefits of small water harvesting structures in Dewas, Madhya Pradesh," Agricultural Water Management, Elsevier, vol. 131(C), pages 204-211.
    8. van Koppen, Barbara & Tarimo, A. K. P. R. & van Eeden, A. & Manzungu, E. & Sumuni, P. M., "undated". "Winners and losers of IWRM [Integrated Water Resources Management] in Tanzania," Papers published in Journals (Open Access) H047791, International Water Management Institute.
    9. Egerer, Sabine & Cotera, Rodrigo Valencia & Celliers, Louis & Costa, María Máñez, 2021. "A leverage points analysis of a qualitative system dynamics model for climate change adaptation in agriculture," Agricultural Systems, Elsevier, vol. 189(C).
    10. Novo, Paula & Garrido, Alberto, 2010. "The new Nicaraguan water law in context: Institutions and challenges for water management and governance," IFPRI discussion papers 1005, International Food Policy Research Institute (IFPRI).
    11. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    12. Heinrich Zozmann & Alexander Morgan & Christian Klassert & Bernd Klauer & Erik Gawel, 2022. "Can Tanker Water Services Contribute to Sustainable Access to Water? A Systematic Review of Case Studies in Urban Areas," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    13. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    14. Kumar, Shalander & Ramilan, Thiagarajah & Ramarao, C.A. & Rao, Ch. Srinivasa & Whitbread, Anthony, 2016. "Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants," Agricultural Water Management, Elsevier, vol. 176(C), pages 55-66.
    15. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    16. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    17. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    18. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    19. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    20. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03288-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.