IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i9d10.1007_s11269-019-02382-w.html
   My bibliography  Save this article

Numerical Simulation of the Water Surface Movement with Macroscopic Particles of Dam Break Flow for Various Obstacles

Author

Listed:
  • Alibek Issakhov

    (al-Farabi Kazakh National University
    Kazakh British Technical University)

  • Medina Imanberdiyeva

    (al-Farabi Kazakh National University)

Abstract

In this paper, the movement of the water surface with macroscopic particles during a dam break flow using the volume of fluid (VOF) methods and the DPM and MPM models were numerically simulated. The numerical simulation is based on the averaged Navier-Stokes equations, and was closed by the LES turbulent model, representing by the incompressible viscous fluid flow, equations for the phase and particle motion. The PISO numerical algorithm was chosen to solve this equation system numerically. The accuracy of the mathematical model and the selected numerical scheme were compared with experimental measurements on the destruction of the dam break problem. In test problem, the values were matched with measurement values and simulation data of other authors, as well as the improved model illustrated values close to the measured values. A matching was also made of the computational data with measured values using different turbulent models. One problem has been considered, the problem is water movement with macroscopic particles, through a heterogeneous terrain and a dam that has a hole. With the help of the problems, it was determined the flooding zones and the time of flooding evacuating people from dangerous areas.

Suggested Citation

  • Alibek Issakhov & Medina Imanberdiyeva, 2020. "Numerical Simulation of the Water Surface Movement with Macroscopic Particles of Dam Break Flow for Various Obstacles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2625-2640, July.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-019-02382-w
    DOI: 10.1007/s11269-019-02382-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02382-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02382-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hriday Mani Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    2. Hriday Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    3. Alibek Issakhov & Yeldos Zhandaulet & Aizhan Abylkassymova, 2020. "Numerical Simulation of the Water Surface Movement with Macroscopic Particles on Movable Beds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2291-2311, June.
    4. Ismail Haltas & Sebnem Elçi & Gokmen Tayfur, 2016. "Numerical Simulation of Flood Wave Propagation in Two-Dimensions in Densely Populated Urban Areas due to Dam Break," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5699-5721, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasilis Bellos & Ino Papageorgaki & Ioannis Kourtis & Harris Vangelis & Ioannis Kalogiros & George Tsakiris, 2020. "Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 711-726, April.
    2. Md Golam Rabbani Fahad & Rouzbeh Nazari & M. H. Motamedi & Maryam E. Karimi, 2020. "Coupled Hydrodynamic and Geospatial Model for Assessing Resiliency of Coastal Structures under Extreme Storm Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1123-1138, February.
    3. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    4. Alireza Khoshkonesh & Blaise Nsom & Farhad Bahmanpouri & Fariba Ahmadi Dehrashid & Atefeh Adeli, 2021. "Numerical Study of the Dynamics and Structure of a Partial Dam-Break Flow Using the VOF Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1513-1528, March.
    5. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    6. Francesco Macchione & Gianluca De Lorenzo & Pierfranco Costabile & Babak Razdar, 2016. "The Power Function for Representing the Reservoir Rating Curve: Morphological Meaning and Suitability for Dam Breach Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4861-4881, October.
    7. Ling Peng & Ting Zhang & Jianzhu Li & Ping Feng, 2023. "Three-Dimensional Numerical Study of Dam-Break Flood Impacting Problem with VOF Method and Different Turbulence Closures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3875-3895, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-019-02382-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.