IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i6d10.1007_s11269-020-02543-2.html
   My bibliography  Save this article

Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 2- Quantification of Reliability Attributes

Author

Listed:
  • Mohammad Karamouz

    (University of Tehran)

  • Helia Farzaneh

    (University of Tehran)

Abstract

In a companion paper (Part 1), the basic concepts are discussed in details. In this paper, the application of the concepts and the proposed methodology in that paper are utilized to set the strategies in order to quantify reliability attributes. The case study is Hunts Point wastewater treatment plant and its sewershed in Bronx, New York City, so that it could function during flood. The strategies are selected and reliability of the Hunts Point plant is estimated before and after using best management practices (BMPs). Therefore, the copula based non-stationary 100–year flood frequency analysis of rainfall and storm surge analyzed in the companion paper (Part 1), are used to obtain the design values of surge and rainfall. A differential evaluation Markov Chain with Bayesian interface is used in that paper for parameter estimation. Because the co-occurrence of surge and rainfall is more critical in coastal areas, the design value resulted from bivariate analysis has been considered in this study. In this Part 2, a multi-criteria decision making (MCDM) approach, which characterized the uncertainty of sub-criteria in load-resistance concept, is applied. The Margin of Safety (MOS) concept is extended to numerically assess a rather non-probabilistic MCDM evaluation of load and resistance to estimate the reliability of the plant. Finally, Effective strategies are selected for flood hazard mitigation to improve the reliability and performance of the plant. The results present an increase of about 46% in reliability after using BMPs. The framework presented in this paper is applicable to other coastal watersheds and could be a platform for addressing some pressing issues in coastal preparedness with impacts on design criteria of coastal infrastructure.

Suggested Citation

  • Mohammad Karamouz & Helia Farzaneh, 2020. "Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 2- Quantification of Reliability Attributes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2043-2059, April.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02543-2
    DOI: 10.1007/s11269-020-02543-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02543-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02543-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.
    2. Mohammad Karamouz & Helia Farzaneh & Mehri Dolatshahi, 2020. "Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 1 – Basic Concepts and Statistical Settings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 579-594, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Karamouz & F. Fooladi Mahani, 2021. "DEM Uncertainty Based Coastal Flood Inundation Modeling Considering Water Quality Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3083-3103, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melese Mulu Baylie & Csaba Fogarassy, 2022. "Decision Analysis of the Adaptation of Households to Extreme Floods Using an Extended Protection Motivation Framework—A Case Study from Ethiopia," Land, MDPI, vol. 11(10), pages 1-20, October.
    2. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    3. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    4. Rahmawati Rahayu & Simon A. Mathias & Sim Reaney & Gianni Vesuviano & Rusmawan Suwarman & Agus M. Ramdhan, 2023. "Impact of land cover, rainfall and topography on flood risk in West Java," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1735-1758, March.
    5. Torres-Alves, Gina Alexandra & Morales-Nápoles, Oswaldo, 2020. "Reliability analysis of flood defenses: The case of the Nezahualcoyotl dike in the aztec city of Tenochtitlan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Roxana Leitold & Javier Revilla Diez & Van Tran, 2020. "Are we expecting too much from the private sector in flood adaptation? Scenario-based field experiments with small- and medium-sized firms in Ho Chi Minh City, Vietnam," Climatic Change, Springer, vol. 163(1), pages 359-378, November.
    7. Alias Nurul Ashikin & Mohd Idris Nor Diana & Chamhuri Siwar & Md. Mahmudul Alam & Muhamad Yasar, 2021. "Community Preparation and Vulnerability Indices for Floods in Pahang State of Malaysia," Land, MDPI, vol. 10(2), pages 1-23, February.
    8. M. Karamouz & F. Fooladi Mahani, 2021. "DEM Uncertainty Based Coastal Flood Inundation Modeling Considering Water Quality Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3083-3103, August.
    9. Andung Bayu Sekaranom & Emilya Nurjani & Fitria Nucifera, 2021. "Agricultural Climate Change Adaptation in Kebumen, Central Java, Indonesia," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    10. Md. Ishtiaque Haider Ishty* & Ahmad Aldrie Amir & Nor Diana Mohd Idris & Mohd Raihan Taha & Mohammad Imam Hasan Reza, 2019. "Flood Risk Perception and Land Use Change Analysis in Flood Affected- Communities: A Case Study of Temerloh, Malaysia," The Journal of Social Sciences Research, Academic Research Publishing Group, vol. 5(2), pages 298-307, 02-2019.
    11. Roshan Wahab & Robert Tiong, 2017. "Multi-variate residential flood loss estimation model for Jakarta: an approach based on a combination of statistical techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 779-804, March.
    12. Febi Dwirahmadi & Shannon Rutherford & Dung Phung & Cordia Chu, 2019. "Understanding the Operational Concept of a Flood-Resilient Urban Community in Jakarta, Indonesia, from the Perspectives of Disaster Risk Reduction, Climate Change Adaptation and Development Agencies," IJERPH, MDPI, vol. 16(20), pages 1-24, October.
    13. Haushofer, Jakob, 2018. "Towards a climate-resilient Jakarta: An analysis of the resilience thinking behind Jakarta's current public policy approach to climate-related hazards," ÖFSE-Forum, Austrian Foundation for Development Research (ÖFSE), volume 65, number 65.
    14. Popi Rejekiningrum & Yayan Apriyana & Sutardi & Woro Estiningtyas & Hendri Sosiawan & Helena Lina Susilawati & Anggri Hervani & Annisa Dhienar Alifia, 2022. "Optimising Water Management in Drylands to Increase Crop Productivity and Anticipate Climate Change in Indonesia," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    15. Barbara Paterson & Anthony Charles, 2019. "Community-based responses to climate hazards: typology and global analysis," Climatic Change, Springer, vol. 152(3), pages 327-343, March.
    16. Shokhrukh-Mirzo Jalilov & Mohamed Kefi & Pankaj Kumar & Yoshifumi Masago & Binaya Kumar Mishra, 2018. "Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    17. Omid Rahmati & Hamid Reza Pourghasemi, 2017. "Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1473-1487, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02543-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.