IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i5d10.1007_s11269-020-02519-2.html
   My bibliography  Save this article

Estimating the Impacts of Urbanization in the Next 100 years on Spatial Hydrological Response

Author

Listed:
  • Xiangang Luo

    (China University of Geosciences)

  • Jianqing Li

    (China University of Geosciences)

  • Shuang Zhu

    (China University of Geosciences)

  • Zhanya Xu

    (China University of Geosciences)

  • Zhibin Huo

    (Chinese Academy of Geological Sciences)

Abstract

Figuring out the impacts of future urbanization on hydrological response is significant in a rapidly changing environment. As an important urbanization element, the various impacts of land use/land cover change have been studied a lot with the methods of combining different land use scenarios and hydrological models. However, it needs to be improved because of only simplified land use scenarios being considered, which cannot reflect the real urbanization process of the future. Taking into account the roles of social and economic development, in this paper, a hybrid FLUS-SWAT method is proposed for the first time for accurately evaluating the hydrological responses to urbanization. First, instead of subjective assumption, future land use patterns are predicted by developing improved cellular automata model on driving forces involving regional population, gross domestic product, location, transportation network, etc. Then, spatial hydrological responses were individually analyzed by coupling projected future land use scenarios and distributed hydrological model. The results clearly forecasted a burst of urban expansion in future 100 years in Zhexi river basin, China. Loss of forest and agriculture land will lead to a 64.86% increase in surface runoff and 9.05% decrease in groundwater flow. This study is significant for ecological environment planning because it provides a direct understanding of future urbanization level as well as its impacts on hydrological processes.

Suggested Citation

  • Xiangang Luo & Jianqing Li & Shuang Zhu & Zhanya Xu & Zhibin Huo, 2020. "Estimating the Impacts of Urbanization in the Next 100 years on Spatial Hydrological Response," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1673-1692, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02519-2
    DOI: 10.1007/s11269-020-02519-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02519-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02519-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinkang Du & Hanyi Rui & Tianhui Zuo & Qian Li & Dapeng Zheng & Ailing Chen & Youpeng Xu & C.-Y. Xu, 2013. "Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2823-2838, June.
    2. Priyamitra Munoth & Rohit Goyal, 2019. "Effects of DEM Source, Spatial Resolution and Drainage Area Threshold Values on Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3303-3319, July.
    3. Francesco Viola & X. Feng & D. Caracciolo, 2019. "Impacts of Hydrological Changes on Annual Runoff Distribution in Seasonally Dry Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2319-2333, May.
    4. Dong Yan & Zhiwei Jia & Jie Xue & Huaiwei Sun & Dongwei Gui & Yi Liu & Xiaofan Zeng, 2018. "Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    5. Xiao-Bo Luan & Pu-Te Wu & Shi-Kun Sun & Xiao-Lei Li & Yu-Bao Wang & Xue-Rui Gao, 2018. "Impact of Land Use Change on Hydrologic Processes in a Large Plain Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3203-3217, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Zhaoshun Liu & Shujie Li, 2022. "Research on Land Use Simulation of Incorporating Historical Information into the FLUS Model—Setting Songyuan City as an Example," Sustainability, MDPI, vol. 14(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    2. Alberto Martínez-Salvador & Agustín Millares & Joris P. C. Eekhout & Carmelo Conesa-García, 2021. "Assessment of Streamflow from EURO-CORDEX Regional Climate Simulations in Semi-Arid Catchments Using the SWAT Model," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    3. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    4. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li, 2018. "Studies on the Spatiotemporal Variability of River Water Quality and Its Relationships with Soil and Precipitation: A Case Study of the Mun River Basin in Thailand," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    5. Zhouyayan Li & Jerry Mount & Ibrahim Demir, 2022. "Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 977-1004, May.
    6. Xianli Xu & Wen Liu & Rashad Rafique & Kelin Wang, 2013. "Revisiting Continental U.S. Hydrologic Change in the Latter Half of the 20th Century," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4337-4348, September.
    7. Haas, Marcelo B. & Guse, Björn & Pfannerstill, Matthias & Fohrer, Nicola, 2015. "Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis," Ecological Modelling, Elsevier, vol. 314(C), pages 62-72.
    8. Jin Kathrine Fosli & A. Amarender Reddy & Radhika Rani, 2021. "The Policy of Free Electricity to Agriculture Sector: Implications and Perspectives of the Stakeholders in India," Journal of Development Policy and Practice, , vol. 6(2), pages 252-269, July.
    9. Chengcheng Huang & Guoqiang Wang & Xiaogu Zheng & Jingshan Yu & Xinyi Xu, 2015. "Simple Linear Modeling Approach for Linking Hydrological Model Parameters to the Physical Features of a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3265-3289, July.
    10. Fan Fan & Bei Li & Weifeng Zhang & John R. Porter & Fusuo Zhang, 2021. "Evaluation of Sustainability of Irrigated Crops in Arid Regions, China," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    11. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    12. Shuang Zhu & Zhanya Xu & Xiangang Luo & Chao Wang & Hairong Zhang, 2019. "Quantifying the Contributions of Climate Change and Human Activities to Drought Extremes, Using an Improved Evaluation Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5051-5065, December.
    13. Alberto Martínez-Salvador & Carmelo Conesa-García, 2020. "Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a Karst Watershed of the Semiarid Mediterranean Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 785-802, January.
    14. Ahmad Bathaei & Dalia Štreimikienė, 2023. "A Systematic Review of Agricultural Sustainability Indicators," Agriculture, MDPI, vol. 13(2), pages 1-19, January.
    15. Runjie Li & Jinkang Du & Guodong Bian & Yuefeng Wang & Changchun Chen & Xueliang Zhang & Maohua Li & Shanshan Wang & Senyao Wu & Shunping Xie & Long Yang & Chong-Yu Xu, 2020. "An Integrated Modelling Approach for Flood Simulation in the Urbanized Qinhuai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3967-3984, October.
    16. Li-Chi Chiang & Yi-Ting Chuang & Chin-Chuan Han, 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    17. Lanhua Luo & Qing Zhou & Hong S. He & Liangxia Duan & Gaoling Zhang & Hongxia Xie, 2020. "Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    18. Lanie A. Alejo & Arlen S. Alejandro, 2022. "Changes in Irrigation Planning and Development Parameters Due to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1711-1726, March.
    19. Shuai Li & Tao Du & Christopher James Gippel, 2022. "A Modified Fu (1981) Equation with a Time-varying Parameter that Improves Estimates of Inter-annual Variability in Catchment Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1645-1659, March.
    20. Zhengfang Jiang & Baohong Lu & Zunguang Zhou & Yirui Zhao, 2024. "Comparison of Process-Driven SWAT Model and Data-Driven Machine Learning Techniques in Simulating Streamflow: A Case Study in the Fenhe River Basin," Sustainability, MDPI, vol. 16(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02519-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.