IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i4d10.1007_s11269-020-02507-6.html
   My bibliography  Save this article

Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index

Author

Listed:
  • Saeed Azimi

    (University of Sistan and Baluchestan)

  • Mehdi Azhdary Moghaddam

    (University of Sistan and Baluchestan)

Abstract

Determining the quantitative occurrence of droughts, discovering the spatial correlation of droughts, and predicting the occurrence of undesirable classes of drinking water quality and aquifer farming is of high importance. In this research, the Standardized Precipitation Index (SPI) was calculated and analyzed with a monthly survey of 26,027 wells in 609 study areas over a period of 20 years. After analyzing the missing data, the annual rainfall was forecasted in 362 synoptic stations of the country based on an artificial intelligence model. In addition, statistical relationships were extracted in order to achieve a comprehensive and historical map of the state of shortages and surpluses of water resources, as well as verification of artificial intelligence relationships in predicting base data cultivars. The results indicated that the “mild drought” indicator was steeper than the “near-normal drought” indicator. Eventually, the southern and eastern regions and certain parts of the northeast of the country in the period from 2005 to 2015 were placed in the 7th and 8th classes, which indicates severe drought. The analysis of the period 1994–2014 showed that the plains of the Sistan and Baluchestan Province in the south-east region of the country have been significantly more affected by the droughts. With the exception of the central parts of Khorasan, the general eastern, southeast, and southern regions of the country can be considered as an absolute drought class for the long term.

Suggested Citation

  • Saeed Azimi & Mehdi Azhdary Moghaddam, 2020. "Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1369-1405, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02507-6
    DOI: 10.1007/s11269-020-02507-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02507-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02507-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2013. "Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 137-151, January.
    2. P. Shirisha & K. Venkata Reddy & Deva Pratap, 2019. "Real-Time Flow Forecasting in a Watershed Using Rainfall Forecasting Model and Updating Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4799-4820, November.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    5. Jin-Cheng Fu & Hsiao-Yun Huang & Jiun-Huei Jang & Pei-Hsun Huang, 2019. "River Stage Forecasting Using Multiple Additive Regression Trees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4491-4507, October.
    6. Nowrouz Kohzadi & Milton S. Boyd & Iebeling Kaastra & Bahman S. Kermanshahi & David Scuse, 1995. "Neural Networks for Forecasting: An Introduction," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 43(3), pages 463-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laís Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.
    2. Morteza Pakdaman & Iman Babaeian & Zohreh Javanshiri & Yashar Falamarzi, 2022. "European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 611-623, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    2. Jae Ryu & Mohammad Sohrabi & Anil Acharya, 2014. "Toward Mapping Gridded Drought Indices to Evaluate Local Drought in a Rapidly Changing Global Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3859-3869, September.
    3. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    4. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    5. Zhonghua He & Hong Liang & Zhaohui Yang & Fasu Huang & Xinbo Zeng, 2018. "Water system characteristics of Karst river basins in South China and their driving mechanisms of hydrological drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1155-1178, June.
    6. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    7. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    8. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    9. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    10. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    11. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    12. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    13. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    14. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    15. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    16. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    17. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    18. Brunella Bonaccorso & David Peres & Antonio Castano & Antonino Cancelliere, 2015. "SPI-Based Probabilistic Analysis of Drought Areal Extent in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 459-470, January.
    19. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    20. Efrosyni Kanellou & Nicos Spyropoulos & Nicolas Dalezios, 2012. "Geoinformatic Intelligence Methodologies for Drought Spatiotemporal Variability in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1089-1106, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02507-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.