IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i1d10.1007_s11269-019-02452-z.html
   My bibliography  Save this article

Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem

Author

Listed:
  • Ankur Srivastava

    (The University of Newcastle)

  • Proloy Deb

    (University of Newcastle)

  • Nikul Kumari

    (The University of Newcastle)

Abstract

Estimation of terrestrial water budget at global and regional scales are essential for efficient agricultural water management, flood predictions, and, hydrological modeling. In hydrological modeling, it is a challenging task to quantify the major hydrological components like runoff, evapotranspiration (ET), and total water storage (TWS) due to improper and limited availability of detailed meteorological datasets. Furthermore, there has been no consensus to answer a-decade-long critical question that a less data-intensive models can be an alternate to robust data-intensive models in data scarce conditions. This study aims at multi-model approach over the single models usage for representing the hydrological behaviour in the Kangsabati River Basin (KRB), India. It is done by applying the standard model selection criteria over various hydrological models. Two hydrological models are selected, a semi- distributed model, Variable Infiltration Capacity (VIC-3 L), and a conceptually lumped model, Identification of unit Hydrograph and Component flows from Rainfall, Evapotranspiration and Streamflow (IHACRES). Both models were calibrated against the observed daily discharge at the KRB outlet for the period of 2001–2006 and validated for 2008–2010. The results show that both VIC-3 L and IHACRES produce reasonable runoff estimates at daily and monthly time scale in the KRB. The ET estimates show that VIC-3 L and IHACRES captured the seasonal variations with the percent change of 0.4% and 6.6% respectively. As IHACRES is simpler, parsimonious, fewer parameters, and better performances, it can be useful for hydrological modeling in data-scarce regions.

Suggested Citation

  • Ankur Srivastava & Proloy Deb & Nikul Kumari, 2020. "Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 327-341, January.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02452-z
    DOI: 10.1007/s11269-019-02452-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02452-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02452-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusuf Alizade Govarchin Ghale & Abdusselam Altunkaynak & Alper Unal, 2018. "Investigation Anthropogenic Impacts and Climate Factors on Drying up of Urmia Lake using Water Budget and Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 325-337, January.
    2. Thian Gan, 2000. "Reducing Vulnerability of Water Resources of Canadian Prairies to Potential Droughts and Possible Climatic Warming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(2), pages 111-135, April.
    3. Ishtiyaq Ahmad & Mukesh Kumar Verma, 2018. "Application of Analytic Hierarchy Process in Water Resources Planning: A GIS Based Approach in the Identification of Suitable Site for Water Storage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5093-5114, December.
    4. Ike Sari Astuti & Kamalakanta Sahoo & Adam Milewski & Deepak R. Mishra, 2019. "Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4087-4103, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankur Srivastava & Nikul Kumari & Minotshing Maza, 2020. "Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3779-3794, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankur Srivastava & Nikul Kumari & Minotshing Maza, 2020. "Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3779-3794, September.
    2. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    3. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    4. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    5. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    6. Theint Thandar Bol & Timothy O. Randhir, 2024. "Predicting Land Use and Land Cover Changes in the Chindwin River Watershed of Myanmar Using Multilayer Perceptron-Artificial Neural Networks," Land, MDPI, vol. 13(8), pages 1-20, July.
    7. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    8. Hao Wang & Quan Liu & Hongyang Zhang & Yinlong Jin & Wenzhen Yu, 2022. "A Two-Stage Decision-Making Method Based on WebGIS for Bulk Material Transportation of Hydropower Construction," Energies, MDPI, vol. 15(5), pages 1-21, February.
    9. Rasoul Maleki & Mehdi Nooripoor & Zeinab Sharifi & Dacinia Crina Petrescu, 2023. "Application of community‐based system dynamics for the management of rural households' vulnerability to the drying of Urmia Lake," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 573-585, May.
    10. Yashar Dadrasajirlou & Hojat Karami & Seyedali Mirjalili, 2023. "Using AHP-PROMOTHEE for Selection of Best Low-Impact Development Designs for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 375-402, January.
    11. Seyed Kamal Ghoreishi Gharehtikan & Saeid Gharechelou & Emad Mahjoobi & Saeed Golian & Fatemeh Rafiei & Hossein Salehi, 2024. "Surface Water Resources Planning in an Ungauged Transboundary Basin Using Satellite Products and the AHP Method," Geographies, MDPI, vol. 4(2), pages 1-17, May.
    12. Shoma Tanzeeba & Thian Gan, 2012. "Potential impact of climate change on the water availability of South Saskatchewan River Basin," Climatic Change, Springer, vol. 112(2), pages 355-386, May.
    13. Vahid Isazade & Abdul Baser Qasimi & Gordana Kaplan, 2021. "Investigation Of The Effects Of Salt Dust Caused By Drying Of Urmia Lake On The Sustainability Of Urban Environments," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 5(2), pages 78-84, December.
    14. Babak Farjad & Anil Gupta & Danielle J. Marceau, 2016. "Annual and Seasonal Variations of Hydrological Processes Under Climate Change Scenarios in Two Sub-Catchments of a Complex Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2851-2865, June.
    15. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    16. Budi Hadi Narendra & Chairil Anwar Siregar & I Wayan Susi Dharmawan & Asep Sukmana & Pratiwi & Irfan Budi Pramono & Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Agung Budi Supangat & Purw, 2021. "A Review on Sustainability of Watershed Management in Indonesia," Sustainability, MDPI, vol. 13(19), pages 1-29, October.
    17. Onyango Dancan O. & Ikporukpo Christopher O. & Taiwo John O. & Opiyo Stephen B., 2021. "Monitoring the extent and impacts of watershed urban development in the Lake Victoria Basin, Kenya, using a combination of population dynamics, remote sensing and GIS techniques," Environmental & Socio-economic Studies, Sciendo, vol. 9(2), pages 11-25, June.
    18. Daniyal Hassan & Steven J. Burian & Ryan C. Johnson & Sangmin Shin & Michael E. Barber, 2023. "The Great Salt Lake Water Level is Becoming Less Resilient to Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2697-2720, May.
    19. Darllan Collins Cunha e Silva & Renan Angrizani Oliveira & Vanessa Cezar Simonetti & Bruno Pereira Toniolo & Jomil Costa Abreu Sales & Roberto Wagner Lourenço, 2023. "Creation of an environmental sustainability index for water resources applied to watersheds," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11285-11305, October.
    20. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02452-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.