IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i6d10.1007_s11269-019-02229-4.html
   My bibliography  Save this article

Multi-Objective Planning for Conjunctive Use of Surface and Ground Water Resources Using Genetic Programming

Author

Listed:
  • Reza Sepahvand

    (Isfahan University of Technology)

  • Hamid R. Safavi

    (Isfahan University of Technology)

  • Farshad Rezaei

    (Isfahan University of Technology)

Abstract

In arid and semi-arid regions, climate change causes a drastic decline in the volume of water resources as water demands increase. Thus, the present study is aimed at using a simulation-optimization model to perform conjunctive management of surface-ground water use to achieve two main objectives: (1) minimizing shortages in meeting irrigation water demands and (2) maximizing the total agricultural net benefit for the main crops of an agricultural sector. To meet these main goals, first, the genetic programming (GP) method is used to simulate surface water-groundwater interactions. Then, the simulation model is linked to a multi-objective genetic algorithm (MOGA) as the optimization model, yielding a simulation-optimization model. In order to investigate the impact of different climatic conditions on the optimized surface and ground water allocation and propose an optimal crop pattern for each climatic period, three planning periods (wet, normal and dry) were addressed in modeling the conjunctive water use management problem. Finally, the economic results of this study suggested a maximum increase in the net benefit by 38.19%, 59.37% and 45%, as compared to those obtained in the actual operation in wet, normal and dry years, respectively, for one study sub-area. The net benefit was also increased by at most 84.79%, 83.3% and 120.77% in wet, normal and dry years, respectively, for another study sub-area, demonstrating the competence of the optimal conjunctive use model to enhance net benefits with the least negative socio-environmental impacts resulting from any development and management scheme in the field of water resources.

Suggested Citation

  • Reza Sepahvand & Hamid R. Safavi & Farshad Rezaei, 2019. "Multi-Objective Planning for Conjunctive Use of Surface and Ground Water Resources Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2123-2137, April.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02229-4
    DOI: 10.1007/s11269-019-02229-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02229-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02229-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajib Bhattacharjya & Bithin Datta, 2005. "Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 295-320, June.
    2. Nilgun Harmancioglu & Filiz Barbaros & Cem Cetinkaya, 2013. "Sustainability Issues in Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1867-1891, April.
    3. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    4. Hamid Safavi & Fatemeh Darzi & Miguel Mariño, 2010. "Simulation-Optimization Modeling of Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1965-1988, August.
    5. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    6. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong, 2018. "An interval multi-objective programming model for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 196(C), pages 24-36.
    7. Yousefi, Maryam & Banihabib, Mohammad Ebrahim & Soltani, Jaber & Roozbahani, Abbas, 2018. "Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater," Agricultural Water Management, Elsevier, vol. 208(C), pages 224-231.
    8. M. Rezapour Tabari & Abdollah Yazdi, 2014. "Conjunctive Use of Surface and Groundwater with Inter-Basin Transfer Approach: Case Study Piranshahr," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1887-1906, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Arefinia & Omid Bozorg-Haddad & Khaled Ahmadaali & Javad Bazrafshan & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Estimation of geographical variations in virtual water content and crop yield under climate change: comparison of three data mining approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8378-8396, June.
    2. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    3. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    4. Zahra Kayhomayoon & Sami Ghordoyee Milan & Naser Arya Azar & Pete Bettinger & Faezeh Babaian & Abolfazl Jaafari, 2022. "A Simulation-Optimization Modeling Approach for Conjunctive Water Use Management in a Semi-Arid Region of Iran," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    5. Saeid Akbarifard & Mohamad Reza Madadi & Mohammad Zounemat-Kermani, 2024. "An artificial intelligence-based model for optimal conjunctive operation of surface and groundwater resources," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jain, Sonal & Ramesh, Dharavath & Trivedi, Munesh C. & Edla, Damodar Reddy, 2023. "Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    8. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    2. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    3. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    4. Safavi, Hamid R. & Enteshari, Sajad, 2016. "Conjunctive use of surface and ground water resources using the ant system optimization," Agricultural Water Management, Elsevier, vol. 173(C), pages 23-34.
    5. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    6. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    7. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    8. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    9. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    11. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    12. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    13. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    14. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Elahe Fallah-Mehdipour & Omid Bozorg Haddad & Saeed Alimohammadi & Hugo Loáiciga, 2015. "Development of Real-Time Conjunctive Use Operation Rules for Aquifer-Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1887-1906, April.
    17. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    18. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    19. Aliasghar Montazar, 2013. "A decision tool for optimal irrigated crop planning and water resources sustainability," Journal of Global Optimization, Springer, vol. 55(3), pages 641-654, March.
    20. Jain, Sonal & Ramesh, Dharavath & Trivedi, Munesh C. & Edla, Damodar Reddy, 2023. "Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-02229-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.