IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i5d10.1007_s11269-019-02218-7.html
   My bibliography  Save this article

Assessment of Two Different Methods in Predicting Hydrological Drought from the Perspective of Water Demand

Author

Listed:
  • Giovana Cristina Santos Medeiros

    (Federal University of Rio Grande do Norte (PPgES/UFRN))

  • Adelena Gonçalves Maia

    (Universidade Federal do Rio Grande do Norte (UFRN))

  • Joana Darc Freire Medeiros

    (Universidade Federal do Rio Grande do Norte (UFRN))

Abstract

The traditional methodologies to determine hydrologic drought use standardized drought indexes, which do not express a drought’s severity in terms of the volume deficit and do not consider water demand as a component of its calculation. To overcome these disadvantages, this work presents a method for the assessment of hydrological drought that determines the volume of water below its demand. A drought can be characterized by its duration, severity and magnitude, using the Threshold Level Method. Complementarily, the method for the assessment of hydrological drought developed by Araújo and Bronstert (2016) was used to compare the characteristics of drought events in the same reservoirs. For this purpose, the droughts that occurred between 1997 and 2015 were studied in two reservoirs in the Piranhas-Açu River basin (Brazil). For both methodologies, the results showed that the reservoir with a higher storage capacity is more efficient and, thus, less susceptible to drought than the smaller. It was found that the basic difference between the two approaches is the time analysis of drought events: while the Threshold Level Method makes it possible to study what occurred in the past to diagnose and plan the use of water in the future, the other method enables the assessment of current conditions to anticipate the start of a hydrologic drought. It is suggested that the two methodologies presented can be used simultaneously by water resource managers to enable a more comprehensive analysis of drought events in the basin.

Suggested Citation

  • Giovana Cristina Santos Medeiros & Adelena Gonçalves Maia & Joana Darc Freire Medeiros, 2019. "Assessment of Two Different Methods in Predicting Hydrological Drought from the Perspective of Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1851-1865, March.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:5:d:10.1007_s11269-019-02218-7
    DOI: 10.1007/s11269-019-02218-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02218-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02218-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Carlos de Araújo & Axel Bronstert, 2016. "A method to assess hydrological drought in semi-arid environments and its application to the Jaguaribe River basin, Brazil," Water International, Taylor & Francis Journals, vol. 41(2), pages 213-230, March.
    2. Yongqin Chen & Qiang Zhang & Mingzhong Xiao & Vijay Singh, 2013. "Evaluation of risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 529-547, September.
    3. R. Pandey & S. Mishra & Ranvir Singh & K. Ramasastri, 2008. "Streamflow Drought Severity Analysis of Betwa River System (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1127-1141, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soyeon Lim & Seungyub Lee & Donghwi Jung, 2021. "Identifying the Drought Impact Factors and Developing Drought Scenarios Using the DSD Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4809-4823, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    2. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2013. "Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 137-151, January.
    3. Paulilo Brasil & Pedro Medeiros, 2020. "NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 195-210, January.
    4. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    5. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    6. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    7. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    8. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    9. Wazir Singh Lakra & Uttam Kumar Sarkar & Rupali Sani Kumar & Ajay Pandey & Vineet Kumar Dubey & Om Prakash Gusain, 2010. "Fish diversity, habitat ecology and their conservation and management issues of a tropical River in Ganga basin, India," Environment Systems and Decisions, Springer, vol. 30(4), pages 306-319, December.
    10. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    11. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    12. G. Tsakiris & I. Nalbantis & H. Vangelis & B. Verbeiren & M. Huysmans & B. Tychon & I. Jacquemin & F. Canters & S. Vanderhaegen & G. Engelen & L. Poelmans & P. Becker & O. Batelaan, 2013. "A System-based Paradigm of Drought Analysis for Operational Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5281-5297, December.
    13. Chao Zhang & Changming Ji & Yi Wang & Qian Xiao, 2022. "Flood hydrograph coincidence analysis of the upper Yangtze River and Dongting Lake, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1339-1360, January.
    14. Gideon A. Nnaji & Clayton J. Clark & Amy B. Chan-Hilton & Wenrui Huang, 2016. "Drought prediction in Apalachicola–Chattahoochee–Flint River Basin using a semi-Markov model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 267-297, May.
    15. Hagen Koch & Ana Lígia Chaves Silva & Stefan Liersch & José Roberto Gonçalves Azevedo & Fred Fokko Hattermann, 2020. "Effects of model calibration on hydrological and water resources management simulations under climate change in a semi-arid watershed," Climatic Change, Springer, vol. 163(3), pages 1247-1266, December.
    16. Yusuke Satoh & Kei Yoshimura & Yadu Pokhrel & Hyungjun Kim & Hideo Shiogama & Tokuta Yokohata & Naota Hanasaki & Yoshihide Wada & Peter Burek & Edward Byers & Hannes Müller Schmied & Dieter Gerten & S, 2022. "The timing of unprecedented hydrological drought under climate change," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Pravat Jena & K. S. Kasiviswanathan & Sarita Azad, 2020. "Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2239-2259, December.
    18. Akinchan Singhai & Sandipan Das & Ajaykumar K. Kadam & J. P. Shukla & D. S. Bundela & Mahesh Kalashetty, 2019. "GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 777-797, April.
    19. Bahram Saghafian & Fatemeh Hamzekhani, 2015. "Hydrological drought early warning based on rainfall threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 815-832, November.
    20. João Santos & Maria Portela & Inmaculada Pulido-Calvo, 2011. "Regional Frequency Analysis of Droughts in Portugal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3537-3558, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:5:d:10.1007_s11269-019-02218-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.