IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i1d10.1007_s11269-018-2092-4.html
   My bibliography  Save this article

Drinking Water Source Monitoring Using Early Warning Systems Based on Data Mining Techniques

Author

Listed:
  • Ianis Delpla

    (Université Laval)

  • Mihai Florea

    (Thales Research & Technology (TRT) Canada)

  • Manuel J. Rodriguez

    (Université Laval)

Abstract

Improving drinking water source monitoring is crucial for efficiently managing the drinking water treatment process and ensuring the delivery of safe water. Data mining techniques could prove useful to help forecast source water quality. In this study, two approaches were used to forecast turbidity mean levels and peaks in the main drinking water source of the city of Québec, Canada. Trend analysis was applied for the prediction of significant turbidity events (>99th percentile of data distribution). Artificial neural networks using antecedent moisture conditions as input parameters (all turbidity peaks) served to forecast daily turbidity time series. Results show that trend analyses help anticipate the timing of turbidity peaks ― with differences between the cold season (fall and winter) and the warm season (spring and summer) and mean anticipations between 45 and 85 min and 25 and 45 min, respectively ― and the magnitude of the peak. The artificial neural network model was developed and proven capable of predicting the mean levels of turbidity at the drinking water intake of the investigated catchment. These early warning systems could be applied to source water system forecasting and provide a framework for adjusting drinking water treatment operations.

Suggested Citation

  • Ianis Delpla & Mihai Florea & Manuel J. Rodriguez, 2019. "Drinking Water Source Monitoring Using Early Warning Systems Based on Data Mining Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 129-140, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2092-4
    DOI: 10.1007/s11269-018-2092-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2092-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2092-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    2. C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    2. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2015. "Effects of Climate Change on the Movement of Turbidity Flow in a Stratified Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4095-4110, September.
    3. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    4. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
    5. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    6. Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    7. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    8. Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
    9. Gebdang B. Ruben & Ke Zhang & Hongjun Bao & Xirong Ma, 2018. "Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 273-283, January.
    10. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    11. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    12. Thendiyath Roshni & Madan K. Jha & Ravinesh C. Deo & A. Vandana, 2019. "Development and Evaluation of Hybrid Artificial Neural Network Architectures for Modeling Spatio-Temporal Groundwater Fluctuations in a Complex Aquifer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2381-2397, May.
    13. Bhattacharjee, Natalia V. & Tollner, Ernest W., 2016. "Improving management of windrow composting systems by modeling runoff water quality dynamics using recurrent neural network," Ecological Modelling, Elsevier, vol. 339(C), pages 68-76.
    14. Jae Chung Park & Myoung-Jin Um & Young-Il Song & Hyun-Dong Hwang & Mun Mo Kim & Daeryong Park, 2017. "Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
    15. Ranković, Vesna & Radulović, Jasna & Radojević, Ivana & Ostojić, Aleksandar & Čomić, Ljiljana, 2010. "Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia," Ecological Modelling, Elsevier, vol. 221(8), pages 1239-1244.
    16. Linlin Zhao & Jasper Mbachu & Zhansheng Liu, 2019. "Exploring the Trend of New Zealand Housing Prices to Support Sustainable Development," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    17. Amanda L. Mather & Richard L. Johnson, 2016. "Forecasting Turbidity during Streamflow Events for Two Mid-Atlantic U.S. Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4899-4912, October.
    18. Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
    19. Minhao Zhang & Zhiyu Zhang & Xuan Wang & Zhenliang Liao & Lijin Wang, 2024. "The Use of Attention-Enhanced CNN-LSTM Models for Multi-Indicator and Time-Series Predictions of Surface Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6103-6119, December.
    20. Shanshan Wang & Joe Wiart, 2020. "Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks," IJERPH, MDPI, vol. 17(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2092-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.