IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i11d10.1007_s11269-019-02332-6.html
   My bibliography  Save this article

Inventory Theory-Based Stochastic Optimization for Reservoir Water Allocation

Author

Listed:
  • Yaowen Xu

    (Northeast Agricultural University
    Northeast Agricultural University)

  • Qiang Fu

    (Northeast Agricultural University
    Northeast Agricultural University)

  • Yan Zhou

    (Northeast Agricultural University
    Northeast Agricultural University)

  • Mo Li

    (Northeast Agricultural University
    Northeast Agricultural University)

  • Yi Ji

    (Northeast Agricultural University
    Northeast Agricultural University)

  • Tianxiao Li

    (Northeast Agricultural University
    Northeast Agricultural University)

Abstract

This study aims to develop an effective model for reservoir water allocation under conditions of uncertainty. To identify a practical method that increases the benefits by optimizing the water allocation policies while reducing the costs by optimizing the water transfer scheme, several stochastic programming models (EOQ-TSP models) were developed by integrating economic order quantity (EOQ) models into a two-stage stochastic programming (TSP) framework. The EOQ-TSP models are advantageous for analyzing the effects of the water inventory scheme on the reservoir water allocation benefits and better at optimizing water allocation policies while also considering uncertainties regarding different flow levels and different water inventory conditions in a water supply-inventory-demand system. Finally, the feasibility of the developed EOQ-TSP models was demonstrated by applying the models to a real-world case study. The results show that the benefits of the optimal water allocation policy will be further increased by optimizing the water transfer scheme, and these proposed models will be helpful for systematizing reservoir water management and identifying optimal reservoir water allocation plans in uncertain environments.

Suggested Citation

  • Yaowen Xu & Qiang Fu & Yan Zhou & Mo Li & Yi Ji & Tianxiao Li, 2019. "Inventory Theory-Based Stochastic Optimization for Reservoir Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3873-3898, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02332-6
    DOI: 10.1007/s11269-019-02332-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02332-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02332-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Zhang & C. Li, 2014. "An Inexact Two-Stage Water Resources Allocation Model for Sustainable Development and Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3161-3178, August.
    2. A. Loukas & N. Mylopoulos & L. Vasiliades, 2007. "A Modeling System for the Evaluation of Water Resources Management Strategies in Thessaly, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1673-1702, October.
    3. Lijia Zhang & Xin'an Yin & Zhihao Xu & Yuan Zhi & Zhifeng Yang, 2016. "Crop Planting Structure Optimization for Water Scarcity Alleviation in China," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 435-445, June.
    4. R. Schultz & L. Stougie & M. H. van der Vlerk, 1996. "Two‐stage stochastic integer programming: a survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 404-416, November.
    5. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    6. Schmitt, Amanda J. & Snyder, Lawrence V. & Shen, Zuo-Jun Max, 2010. "Inventory systems with stochastic demand and supply: Properties and approximations," European Journal of Operational Research, Elsevier, vol. 206(2), pages 313-328, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alisson Lopes Rodrigues & Lineu Neiva Rodrigues & Guilherme Fernandes Marques & Pedro Manuel Villa, 2023. "Simulation Model to Assess the Water Dynamics in Small Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2019-2038, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Dai & Y. Cai & Y. Liu & W. Wang & H. Guo, 2015. "A Generalized Interval Fuzzy Chance-Constrained Programming Method for Domestic Wastewater Management Under Uncertainty – A Case Study of Kunming, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3015-3036, July.
    2. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    3. M. Li & P. Guo & G. Yang & S. Fang, 2014. "IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 241-260, January.
    4. Qiang Fu & Ke Zhao & Dong Liu & Qiuxiang Jiang & Tianxiao Li & Changhong Zhu, 2016. "Two-Stage Interval-Parameter Stochastic Programming Model Based on Adaptive Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2097-2109, April.
    5. Li, Y.P. & Huang, G.H. & Nie, S.L. & Qin, X.S., 2007. "ITCLP: An inexact two-stage chance-constrained program for planning waste management systems," Resources, Conservation & Recycling, Elsevier, vol. 49(3), pages 284-307.
    6. Zhang, Yi Mei & Huang, Guo He, 2011. "Inexact credibility constrained programming for environmental system management," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 441-447.
    7. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    8. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    9. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    10. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    11. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
    12. Changsen Zhao & Bing Shen & Lingmei Huang & Zhidong Lei & Heping Hu & Shixiu Yang, 2009. "A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1183-1210, April.
    13. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    14. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    16. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    17. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    18. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    19. Yong Liu & Yajuan Yu & Huaicheng Guo & Pingjian Yang, 2009. "Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2069-2083, August.
    20. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02332-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.