IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i10d10.1007_s11269-019-02245-4.html
   My bibliography  Save this article

Monitoring Support for Water Distribution Systems based on Pressure Sensor Data

Author

Listed:
  • Caspar V. C. Geelen

    (Wageningen University)

  • Doekle R. Yntema

    (Wetsus)

  • Jaap Molenaar

    (Wageningen University)

  • Karel J. Keesman

    (Wageningen University
    Wetsus
    Wageningen University)

Abstract

The increasing age and deterioration of drinking water mains is causing an increasing frequency of pipe bursts. Not only are pipe repairs costly, bursts might also lead to contamination of the Dutch non-chlorinated drinking water, as well as damage to other above- and underground infrastructure. Detection and localization of pipe bursts have long been priorities for water distribution companies. Here we present a method for proactive leakage control, referred to as Monitoring Support. Contrary to most leak prevention methods, our method is based on real-time pressure sensor measurements and focuses on detection of recurring pressure anomalies, which are assumed to be indicative of misuse or malfunctioning of the water distribution network. The method visualizes and warns for both recurring and one-time anomalous events and offers monitoring experts an unsupervised decision support tool that requires no training data or manual labeling. Additionally, our method supports any time series data source and can be applied to other types of distribution networks, such as those for gas, electricity and oil. The performance of our method, including both instance-based and feature-based clustering, was validated on two pressure sensor data sets. Results indicate that feature-based clustering is the best method for detection of recurring pressure anomalies, with accuracy F1-scores of 92% and 94% for a 2013 and 2017 data set, respectively.

Suggested Citation

  • Caspar V. C. Geelen & Doekle R. Yntema & Jaap Molenaar & Karel J. Keesman, 2019. "Monitoring Support for Water Distribution Systems based on Pressure Sensor Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3339-3353, August.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02245-4
    DOI: 10.1007/s11269-019-02245-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02245-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02245-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, Golam & Tesfamariam, Solomon & Sadiq, Rehan, 2015. "Predicting water main failures using Bayesian model averaging and survival modelling approach," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 498-514.
    2. Sou-Sen Leu & Quang-Nha Bui, 2016. "Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2719-2733, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    4. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    5. Ioan Florin VOICU & Daniel Constantin DIACONU, 2021. "Reducing city household water consumption with internet of things devices," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 9, pages 367-377, November.
    6. Kozłowski Edward & Kowalska Beata & Kowalski Dariusz & Mazurkiewicz Dariusz, 2019. "Survival Function in the Analysis of the Factors Influencing the Reliability of Water Wells Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4909-4921, November.
    7. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    9. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Dayong Li & Zengchuan Dong & Liyao Shi & Jintao Liu & Zhenye Zhu & Wei Xu, 2019. "Risk Probability Assessment of Sudden Water Pollution in the Plain River Network Based on Random Discharge from Multiple Risk Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4051-4065, September.
    12. El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2016. "Utility-Based Maintenance Optimization for Complex Water-Distribution Systems Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4153-4170, September.
    13. Massoud Tabesh & Abbas Roozbahani & Bardia Roghani & Niousha Rasi Faghihi & Reza Heydarzadeh, 2018. "Risk Assessment of Factors Influencing Non-Revenue Water Using Bayesian Networks and Fuzzy Logic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3647-3670, September.
    14. Kızılöz, Burak & Şişman, Eyüp & Oruç, Halil Nurullah, 2022. "Predicting a water infrastructure leakage index via machine learning," Utilities Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02245-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.