IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i4d10.1007_s11269-017-1878-0.html
   My bibliography  Save this article

Long Term Streamflow Forecasting Using a Hybrid Entropy Model

Author

Listed:
  • A. B. Dariane

    (K.N. Toosi University of Technology)

  • M. Farhani

    (K.N. Toosi University of Technology)

  • Sh Azimi

    (K.N. Toosi University of Technology)

Abstract

In this paper, the development and evaluation of an entropy based hybrid data driven model coupled with input selection approach and wavelet transformation is investigated for long-term streamflow forecasting with 10 years lead time. To develop and test the models, data including 45 years of monthly streamflow time series from Taleghan basin, located in northwest of Tehran, are employed. For this purpose, first the performance of a maximum entropy forecasting model is evaluated. To boost the accuracy, an auto-correlation method with %95 confidence levels was carried out to determine the optimum order of the entropy model. Nevertheless, the basic entropy model, as expected, was only able to reach Nash-Sutcliffe efficiency (NSE) index of 0.35 during the test period. On the other hand, data driven models such as artificial neural networks (ANN) have shown to yield good accuracy in modeling complicated and nonlinear systems. Thus, to improve the performance of the maximum entropy model, an entropy-based hybrid model using evolutionary ANN (ENN) was proposed for further investigation. The proposed model with seasonality index substantially improved the test NSE to 0.51 and provided more accurate results than the basic entropy model. Moreover, when wavelet transform was applied to preprocess the input data, the model shows a slight improvement (NSE = 0.54).

Suggested Citation

  • A. B. Dariane & M. Farhani & Sh Azimi, 2018. "Long Term Streamflow Forecasting Using a Hybrid Entropy Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1439-1451, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1878-0
    DOI: 10.1007/s11269-017-1878-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1878-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1878-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arifovic, Jasmina & Gençay, Ramazan, 2001. "Using genetic algorithms to select architecture of a feedforward artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 574-594.
    2. Zaher Mundher Yaseen & Ozgur Kisi & Vahdettin Demir, 2016. "Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4125-4151, September.
    3. Alireza Dariane & Farzane Karami, 2014. "Deriving Hedging Rules of Multi-Reservoir System by Online Evolving Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3651-3665, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anas Mahmood Al-Juboori, 2022. "Solving Complex Rainfall-Runoff Processes in Semi-Arid Regions Using Hybrid Heuristic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 717-728, January.
    2. Xin Liu & Xuefeng Sang & Jiaxuan Chang & Yang Zheng, 2021. "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4021-4041, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    2. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    3. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    4. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
    6. Baragona Roberto & Cucina Domenico, 2013. "Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(1), pages 3-21, February.
    7. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    8. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    9. Javad Jamshidi & Mojtaba Shourian, 2019. "Hedging Rules-Based Optimal Reservoir Operation Using Bat Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4525-4538, October.
    10. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    11. Xinxin He & Jungang Luo & Peng Li & Ganggang Zuo & Jiancang Xie, 2020. "A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 865-884, January.
    12. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    13. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    14. Kisi, Ozgur & Heddam, Salim & Yaseen, Zaher Mundher, 2019. "The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model," Applied Energy, Elsevier, vol. 241(C), pages 184-195.
    15. A. B. Dariane & E. Pouryafar, 2021. "Quantifying and projection of the relative impacts of climate change and direct human activities on streamflow fluctuations," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    16. Sungwon Kim & Meysam Alizamir & Nam Won Kim & Ozgur Kisi, 2020. "Bayesian Model Averaging: A Unique Model Enhancing Forecasting Accuracy for Daily Streamflow Based on Different Antecedent Time Series," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    17. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    18. Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
    19. A. J. Adeloye & B.-S. Soundharajan & C. S. P. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    20. A. Adeloye & B.-S. Soundharajan & C. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1878-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.