IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i15d10.1007_s11269-018-2043-0.html
   My bibliography  Save this article

On the Barriers to Adaption to Less Water under Climate Change: Policy Choices in Mediterranean Countries

Author

Listed:
  • Ana Iglesias

    (Universidad Politécnica de Madrid (UPM))

  • David Santillán

    (Universidad Politécnica de Madrid (UPM))

  • Luis Garrote

    (Universidad Politécnica de Madrid (UPM))

Abstract

Barriers and constraints to adapting water resources management to climate change in the Mediterranean region are analysed in this paper. First, we analysed the risks to the water resources sector derived from climate change. We then identified the main objective of water adaptation measures: ensuring there is enough water for food, for people, and for ecosystems. This implies visions about availability - being sufficient water -, accessibility - both physical and economic access -, and adequacy - being safe for ecosystems and human consumption. A portfolio of local and collective actions to adapt water management for agriculture to climate change in Mediterranean countries is presented. Adaptation strategies included improved efficiency, optimisation of governance, enhancement of participation, development of risk-based choices, and economic instruments. Finally, the paper categorised the constraints to implement the measures, give specific examples about these issues and also quantify their impact. When considering constraints and opportunities to implement these water management practices, any environmental policy regulating their adoption should be based on recommending the use of extension and training to local actors on the application of the practices.

Suggested Citation

  • Ana Iglesias & David Santillán & Luis Garrote, 2018. "On the Barriers to Adaption to Less Water under Climate Change: Policy Choices in Mediterranean Countries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4819-4832, December.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2043-0
    DOI: 10.1007/s11269-018-2043-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2043-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2043-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Julia Urquijo & Lucia De Stefano, 2016. "Perception of Drought and Local Responses by Farmers: A Perspective from the Jucar River Basin, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 577-591, January.
    3. Jing Ma & Keith Hipel & Mitali De & Jun Cai, 2008. "Transboundary Water Policies: Assessment, Comparison and Enhancement," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1069-1087, August.
    4. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    5. James Stoutenborough & Arnold Vedlitz, 2014. "Public Attitudes Toward Water Management and Drought in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 697-714, February.
    6. Richard A. Fuller & Eve McDonald-Madden & Kerrie A. Wilson & Josie Carwardine & Hedley S. Grantham & James E. M. Watson & Carissa J. Klein & David C. Green & Hugh P. Possingham, 2010. "Replacing underperforming protected areas achieves better conservation outcomes," Nature, Nature, vol. 466(7304), pages 365-367, July.
    7. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    8. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    9. Ana Iglesias & Luis Garrote & Francisco Flores & Marta Moneo, 2007. "Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 775-788, May.
    10. Julia Urquijo & Lucia De Stefano, 2016. "Perception of Drought and Local Responses by Farmers: A Perspective from the Jucar River Basin, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 577-591, January.
    11. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    12. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    13. Glenk, Klaus & Fischer, Anke, 2010. "Insurance, prevention or just wait and see? Public preferences for water management strategies in the context of climate change," Ecological Economics, Elsevier, vol. 69(11), pages 2279-2291, September.
    14. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    15. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 0. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899.
    3. Reza Zamani & Ali Mohammad Akhond Ali & Abbas Roozbahani, 2020. "Evaluation of Adaptation Scenarios for Climate Change Impacts on Agricultural Water Allocation Using Fuzzy MCDM Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1093-1110, February.
    4. Ignacio Cazcarro & Miguel Martín-Retortillo & Guillermo Rodríguez-López & Ana Serrano & Javier Silvestre, 2024. "Retaining population with water? Irrigation policies and depopulation in Spain over the long term," Working Papers 0256, European Historical Economics Society (EHES).
    5. Zsuzsanna Ladányi & Károly Barta & Viktória Blanka & Benjámin Pálffy, 2021. "Assessing Available Water Content of Sandy Soils to Support Drought Monitoring and Agricultural Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 869-880, February.
    6. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
    2. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    3. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    4. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    5. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    6. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    9. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    10. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    12. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    13. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    14. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    15. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    16. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    17. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    18. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    19. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    20. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2043-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.