IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i11d10.1007_s11269-022-03257-3.html
   My bibliography  Save this article

Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm

Author

Listed:
  • Hadi Norouzi

    (University of Zanjan)

  • Jalal Bazargan

    (University of Zanjan)

Abstract

To estimate the damage caused by flooding rivers, it is critical to analyze unsteady flow and determine downstream water depth. Hydraulic methods for examining unsteady river flow require cross-sectional specifications of the river at a close distance with optimal accuracy. Obtaining these specifications is often time-consuming and expensive. In contrast, hydrologic routing methods, such as the linear Muskingum method, are more beneficial for the analysis of unsteady flow. In flood routing, the linear Muskingum method has only been utilized to calculate the outflow hydrograph (downstream). However, in practical problems regarding flood analysis, such as economic analysis, damage assessment, and flood management and engineering, downstream water depth is needed. By employing kinematic wave relations, the linear Muskingum method, and the Particle Swarm Optimization (PSO) algorithm, the present study estimates water depth, with respect to time, of a downstream section of the Karun River, between the Mollasani (upstream) and Ahwaz (downstream) hydrometric stations. The proposed approach is simpler and less expensive and more accurate than hydraulic methods. The current work estimated the values of the Mean Relative Error (MRE) to the total flood and the Mean Relative Error (MRE) to the peak section of input depth along with the absolute value of the peak deviations of the observed and routed depth (DPO) as 1.29, 0.24, and 1.16 percent, respectively.

Suggested Citation

  • Hadi Norouzi & Jalal Bazargan, 2022. "Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4343-4361, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03257-3
    DOI: 10.1007/s11269-022-03257-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03257-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03257-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pooja Patel & Arindam Sarkar, 2022. "Entropy-Based Flow and Sediment Routing in Data Deficit River Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2757-2777, June.
    2. Meyer, Volker & Messner, Frank, 2005. "National flood damage evaluation methods: A review of applied methods in England, the Netherlands, the Czech Republik and Germany," UFZ Discussion Papers 21/2005, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Davor Kvočka & Roger Falconer & Michaela Bray, 2015. "Appropriate model use for predicting elevations and inundation extent for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1791-1808, December.
    4. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    5. Jalal Bazargan & Hadi Norouzi, 2018. "Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4763-4777, November.
    6. Abbas Afshar & Hamideh Kazemi & Motahareh Saadatpour, 2011. "Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2613-2632, August.
    7. Heiko Apel & Annegret Thieken & Bruno Merz & Günter Blöschl, 2006. "A Probabilistic Modelling System for Assessing Flood Risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 79-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    2. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    2. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    3. Jean-Luc Kok & Malte Grossmann, 2010. "Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 143-166, January.
    4. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    5. J. Oliver & X. S. Qin & O. Larsen & M. Meadows & M. Fielding, 2018. "Probabilistic flood risk analysis considering morphological dynamics and dike failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 287-307, March.
    6. Jeroen C. J. H. Aerts & Ning Lin & Wouter Botzen & Kerry Emanuel & Hans de Moel, 2013. "Low‐Probability Flood Risk Modeling for New York City," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 772-788, May.
    7. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    8. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    9. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    10. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    11. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    12. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    13. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    14. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    15. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    16. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    17. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    19. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & P. Ballesteros-Pérez, 2015. "Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4817-4831, October.
    20. Volker Meyer & Sally Priest & Christian Kuhlicke, 2012. "Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 301-324, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03257-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.