IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i13d10.1007_s11269-018-2048-8.html
   My bibliography  Save this article

Application Research of Inner-plant Economical Operation by Multi-colony Ant Optimization

Author

Listed:
  • Xiaoyu Wang

    (Hohai University)

  • Kan Yang

    (Hohai University)

  • Liu Yang

    (Hohai University)

Abstract

A new multi-colony ant optimization (MCAO) combined with a dynamic economic distribution (DED) technique has been proposed for the economical operation of the inner-plant of a hydropower station. MCAO and DED are applied to solve the unit commitment (UC) sub-problem and the economic load distribution (ELD) sub-problem consolidating the ramp rate constraints for the entire schedule. Moreover, a patching mechanism is developed to converge quickly on the optimal solution in two respects: minimum up/down and spinning reserve. A mechanism mitigates the premature convergence by measuring the uncertainty of pheromone with information entropy. A local research technique enriches the diversity of solution space by selecting the derived solutions from the perturbation mechanism. In comparison with the genetic algorithm, the particle swarm optimization, and the ant colony optimization, the MCAO is significantly robust and provides better solutions to the economical operation problem of hydropower stations. Numerical simulations exhibit the superiority of the DED technique regarding stably and quickly consolidating the ramp rate constraints.

Suggested Citation

  • Xiaoyu Wang & Kan Yang & Liu Yang, 2018. "Application Research of Inner-plant Economical Operation by Multi-colony Ant Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4275-4295, October.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2048-8
    DOI: 10.1007/s11269-018-2048-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2048-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2048-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    2. Kim, Jong Suk & Edgar, Thomas F., 2014. "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, Elsevier, vol. 77(C), pages 675-690.
    3. Omid Hoseynpour & Behnam Mohammadi-ivatloo & Morteza Nazari-Heris & Somayeh Asadi, 2017. "Application of Dynamic Non-Linear Programming Technique to Non-Convex Short-Term Hydrothermal Scheduling Problem," Energies, MDPI, vol. 10(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    3. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    4. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    5. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    6. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    7. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    8. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    9. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
    10. P. M. R. Bento & S. J. P. S. Mariano & M. R. A. Calado & L. A. F. M. Ferreira, 2020. "A Novel Lagrangian Multiplier Update Algorithm for Short-Term Hydro-Thermal Coordination," Energies, MDPI, vol. 13(24), pages 1-19, December.
    11. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    12. Moritz Nobis & Carlo Schmitt & Ralf Schemm & Armin Schnettler, 2020. "Pan-European CVaR-Constrained Stochastic Unit Commitment in Day-Ahead and Intraday Electricity Markets," Energies, MDPI, vol. 13(9), pages 1-35, May.
    13. Klein Haneveld, W.K. & Vlerk, M.H. van der, 2000. "Optimizing electricity distribution using two-stage integer recourse models," Research Report 00A26, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    15. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    16. Vlasta Kaňková, 2005. "Multistage Stochastic Decision and Economic Processes [Vícestupňové stochastické rozhodování a ekonomické procesy]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2005(1), pages 119-127.
    17. Wangying Xu & Xiaobing Yu, 2022. "Adaptive Guided Spatial Compressive Cuckoo Search for Optimization Problems," Mathematics, MDPI, vol. 10(3), pages 1-28, February.
    18. Michael S. Casey & Suvrajeet Sen, 2005. "The Scenario Generation Algorithm for Multistage Stochastic Linear Programming," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 615-631, August.
    19. Zhu, Y. & Li, Y.P. & Huang, G.H., 2012. "Planning municipal-scale energy systems under functional interval uncertainties," Renewable Energy, Elsevier, vol. 39(1), pages 71-84.
    20. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2048-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.