IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i12d10.1007_s11269-018-1968-7.html
   My bibliography  Save this article

Two-Dimension Monthly River Flow Simulation Using Hierarchical Network-Copula Conditional Models

Author

Listed:
  • Wenzhuo Wang

    (Hohai University)

  • Zengchuan Dong

    (Hohai University)

  • Wei Si

    (Hohai University)

  • Yu Zhang

    (Hohai University)

  • Wei Xu

    (Hohai University)

Abstract

River flow simulation is required on water resources planning and management. This paper proposes hierarchical network-copula conditional models to generate two-dimension monthly streamflow matrix aiming at simulating flow both on time and space. HNCCMs develop the simulation generator driven by both temporal and spatial covariates conditioned upon values of a set of parameters and hyper parameters which can be addressed from the three-layer hierarchical system. In the first layer, streamflow time series of the station at the most upstream is generated using bivariate Archimedean copulas and river flow space series in each month at stations down a river in sequence is simulated by nested copulas in the second layer. Last, the seasonal characters of the temporal parameters and covariates are detected as well as the spatial ones are detected using the neural network by fitting them into functions to contribute to the downscaling of space series. A case study for the model is carried on the Yellow River of China. This case (1) detects temporal and spatial relationships which illustrate the capacity of catching the seasonal characterize and spatial trend, (2) generates a river flow time series at Huayuankou station as well as (3) simulates a flow space sequence in January picking out best fitted building blocks for the cascade of bivariate copulas, and finally (4) synthesizes two-dimension simulation of monthly river flow. The result illustrates the essentially pragmatic nature of HNCCMs on simulation for this spatiotemporal monthly streamflow which is nonlinear and complex both on time and space.

Suggested Citation

  • Wenzhuo Wang & Zengchuan Dong & Wei Si & Yu Zhang & Wei Xu, 2018. "Two-Dimension Monthly River Flow Simulation Using Hierarchical Network-Copula Conditional Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3801-3820, September.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-1968-7
    DOI: 10.1007/s11269-018-1968-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1968-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1968-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Đurica Marković & Jasna Plavšić & Nesa Ilich & Siniša Ilić, 2015. "Non-parametric Stochastic Generation of Streamflow Series at Multiple Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4787-4801, October.
    2. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Armando Almeida Pereira & Álvaro Veiga, 2019. "Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3417-3431, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    2. Qiao-feng Tan & Xu Wang & Pan Liu & Xiao-hui Lei & Si-yu Cai & Hao Wang & Yi Ji, 2017. "The Dynamic Control Bound of Flood Limited Water Level Considering Capacity Compensation Regulation and Flood Spatial Pattern Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 143-158, January.
    3. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    4. Guilherme Armando Almeida Pereira & Álvaro Veiga, 2019. "Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3417-3431, August.
    5. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    6. Xiang Fu & An-Qiang Li & Hui Wang, 2014. "Allocation of Flood Control Capacity for a Multireservoir System Located at the Yangtze River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4823-4834, October.
    7. Nejc Bezak & Matjaž Mikoš & Mojca Šraj, 2014. "Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2195-2212, June.
    8. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    9. Ummul Abdul Rauf & Panlop Zeephongsekul, 2014. "Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4835-4856, October.
    10. Sajjad Abdollahi & Ali Mohammad Akhoond-Ali & Rasoul Mirabbasi & Jan Franklin Adamowski, 2019. "Probabilistic Event Based Rainfall-Runoff Modeling Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3799-3814, September.
    11. Chao Zhang & Changming Ji & Yi Wang & Qian Xiao, 2022. "Flood hydrograph coincidence analysis of the upper Yangtze River and Dongting Lake, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1339-1360, January.
    12. Milan Cisty & Anna Becova & Lubomir Celar, 2016. "Analysis of Irrigation Needs Using an Approach Based on a Bivariate Copula Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 167-182, January.
    13. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    14. Homa Razmkhah & Alireza Fararouie & Amin Rostami Ravari, 2022. "Multivariate Flood Frequency Analysis Using Bivariate Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 729-743, January.
    15. James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
    16. Quansen Wang & Jianzhong Zhou & Kangdi Huang & Ling Dai & Benjun Jia & Lu Chen & Hui Qin, 2021. "A Procedure for Combining Improved Correlated Sampling Methods and a Resampling Strategy to Generate a Multi-Site Conditioned Streamflow Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1011-1027, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-1968-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.