IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i10d10.1007_s11269-018-2005-6.html
   My bibliography  Save this article

The Application of Mixture Distribution for the Estimation of Extreme Floods in Controlled Catchment Basins

Author

Listed:
  • Wiesław Szulczewski

    (Wrocław University of Environmental and Life Sciences)

  • Wojciech Jakubowski

    (Wrocław University of Environmental and Life Sciences)

Abstract

In the estimation of distribution of annual maximum flows it is a generally accepted assumption that the sequence of observations originates from a homogeneous population. This assumption, however, is rarely met. The observed annual maximum flow are only in part generated by flood events. The remaining ones are the result of the effect of other hydrological processes that do not have that character. For this reason, a new solution to this problem is proposed in the paper. It is assumed that the sought distribution is a mixture of two probability distributions: a three-parameter GEV distribution, describing flows generated by events with flood character, and a two-parameter gamma distribution, accounting for maximum annual flows that do not have such a character. The paper presents both the method of estimation of the mixture distribution and its application for gauging stations selected so as to take into account possible the most diverse conditions of meteorological, hydrological and geomorphological character. The area with such a high diversification, selected for the study, is the catchment basin of upper and central river Odra (South-West Poland). In the studied water gauge profiles the proposed mixture distribution indicates correct fit. Its advantages and limitations are presented through a comparative analysis with results obtained during estimation of distributions of maximum annual flows by means of standard methods.

Suggested Citation

  • Wiesław Szulczewski & Wojciech Jakubowski, 2018. "The Application of Mixture Distribution for the Estimation of Extreme Floods in Controlled Catchment Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3519-3534, August.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-2005-6
    DOI: 10.1007/s11269-018-2005-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2005-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2005-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    2. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    3. Milan Stojković & Stevan Prohaska & Nikola Zlatanović, 2017. "Estimation of flood frequencies from data sets with outliers using mixed distribution functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2017-2035, August.
    4. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    5. Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan K. Kazak & Jakub Chruściński & Szymon Szewrański, 2018. "The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management," Sustainability, MDPI, vol. 10(12), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    2. BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," LIDAM Discussion Papers CORE 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    4. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    5. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    6. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43, March.
    7. Rama Cont & Adrien De Larrard, 2011. "Price dynamics in a Markovian limit order market," Papers 1104.4596, arXiv.org.
    8. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    9. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    10. Samiran Das, 2020. "Assessing the Regional Concept with Sub-Sampling Approach to Identify Probability Distribution for at-Site Hydrological Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 803-817, January.
    11. Spierdijk, L. & Nijman, T.E. & van Soest, A.H.O., 2002. "The Price Impact of Trades in Illiquid Stocks in Periods of High and Low Market Activity," Discussion Paper 2002-29, Tilburg University, Center for Economic Research.
    12. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    13. Spierdijk, L., 2002. "An Empirical Analysis of the Role of the Trading Intensity in Information Dissemination on the NYSE," Other publications TiSEM d495caf0-2f2a-425f-8e50-e, Tilburg University, School of Economics and Management.
    14. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    15. Clive Bowsher, 2002. "Modelling Security Market Events in Continuous Time: Intensity based, Multivariate Point Process Models," Economics Series Working Papers 2002-W22, University of Oxford, Department of Economics.
    16. Erick Rengifo & Andresas Heinen, 2004. "Comovements in Trading activity: A Multivariate Autoregressive Model of Time Series Count Data Using Copulas," Econometric Society 2004 Far Eastern Meetings 755, Econometric Society.
    17. Simonsen, Ola, 2005. "An Empirical Model for Durations in Stocks," Umeå Economic Studies 657, Umeå University, Department of Economics.
    18. Chiara Scotti, 2006. "A bivariate model of Fed and ECB main policy rates," International Finance Discussion Papers 875, Board of Governors of the Federal Reserve System (U.S.).
    19. Bhatti, Chad R., 2009. "Intraday trade and quote dynamics: A Cox regression analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2240-2249.
    20. Johannes Prix & Otto Loistl & Michael Huetl, 2007. "Algorithmic Trading Patterns in Xetra Orders," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 717-739.
    21. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-2005-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.