IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i7d10.1007_s11269-017-1619-4.html
   My bibliography  Save this article

Non-Stationary Frequency Analysis of Extreme Water Level: Application of Annual Maximum Series and Peak-over Threshold Approaches

Author

Listed:
  • Ali Razmi

    (Shahrood University of Technology)

  • Saeed Golian

    (Shahrood University of Technology)

  • Zahra Zahmatkesh

    (University of Manitoba)

Abstract

A great challenge has been appeared on if the assumption of data stationary for flood frequency analysis is justifiable. Results for frequency analysis (FA) could be substantially different if non-stationarity is incorporated in the data analysis. In this study, extreme water levels (annual maximum and daily instantaneous maximum) in a coastal part of New York City were considered for FA. Annual maximum series (AMS) and peak-over threshold (POT) approaches were applied to build data timeseries. The resulted timeseries were checked for potential trend and stationarity using statistical tests including Man-Kendall, Augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS). Akaike information criterion (AIC) was utilized to select the most appropriate probability distribution models. Generalized Extreme Value (GEV) distribution and Generalized Pareto Distribution (GPD) were then applied as the probability distribution functions on the selected data based on AMS and POT methods under non-stationary assumption. Two methods of maximum likelihood and penalized maximum likelihood were applied and compared for the estimation of the distributions’ parameters. Results showed that by incorporating non-stationarity in FA, design values of extreme water levels were significantly different from those obtained under the assumption of stationarity. Moreover, in the non-stationary FA, consideration of time-dependency for the distribution parameters resulted in a range of variation for design floods. The findings of this study emphasize on the importance of FA under the assumptions of data stationarity and non-stationarity, and taking into account the worst case flooding scenarios for future planning of the watershed against the probable flood events. There is a need to update models developed for stationary flood risk assessment for more robust and resilient hydrologic predictions. Applying non-stationary FA provides an advanced method to extrapolate return levels up to the desired future time perspectives.

Suggested Citation

  • Ali Razmi & Saeed Golian & Zahra Zahmatkesh, 2017. "Non-Stationary Frequency Analysis of Extreme Water Level: Application of Annual Maximum Series and Peak-over Threshold Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2065-2083, May.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1619-4
    DOI: 10.1007/s11269-017-1619-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1619-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1619-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Vasiliades & P. Galiatsatou & A. Loukas, 2015. "Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 339-358, January.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    4. Ewa M. Syczewska, 2010. "Empirical power of the Kwiatkowski-Phillips-Schmidt-Shin test," Working Papers 45, Department of Applied Econometrics, Warsaw School of Economics.
    5. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    6. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    7. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-han Tang & Jie-feng Wu & Pei-yi Li & Li-juan Zhang & Xiao-hong Chen & Kai-rong Lin, 2019. "Quantifying Flood Frequency Modification Caused by Multi-Reservoir Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4451-4470, October.
    2. Leandro José Isensee & Adilson Pinheiro & Daniel Henrique Marco Detzel, 2021. "Dam Hydrological Risk and the Design Flood Under Non-stationary Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1499-1512, March.
    3. Mahkameh Zarekarizi & Vivek Srikrishnan & Klaus Keller, 2020. "Neglecting Uncertainties Biases House-Elevation Decisions to Manage Riverine Flood Risks," Papers 2001.06457, arXiv.org, revised Sep 2020.
    4. Yue Zhang & Ying Wang & Yunxia Zhang & Qingzu Luan & Heping Liu, 2021. "Multi-scenario flash flood hazard assessment based on rainfall–runoff modeling and flood inundation modeling: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 967-981, January.
    5. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
    6. Antonino Cancelliere, 2017. "Non Stationary Analysis of Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3097-3110, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    2. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    3. ChaoJun Gu & Yongqing Zhu & Renhua Li & He Yao & Xingmin Mu, 2021. "Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 545-566, October.
    4. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
    5. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    6. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    7. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    8. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    9. Navoda Edirisinghe & Selliah Sivarajasingham & John Nigel, 2015. "An Empirical Study of the Fisher Effect and the Dynamic Relationship between Inflation and Interest Rate in Sri Lanka," International Journal of Business and Social Research, LAR Center Press, vol. 5(1), pages 47-62, January.
    10. Sheng He & Dongmei Wang & Xuefeng Sang & Geng Niu, 2024. "Water Resource Regulation and Evaluation Method Based on Optimization of Drought-Limited Water Level in Reservoir Group," Sustainability, MDPI, vol. 16(16), pages 1-36, August.
    11. Manqoba Ntshakala & Laurence Harris, 2018. "The information content of the yield spread about future inflation in South Africa," WIDER Working Paper Series wp-2018-63, World Institute for Development Economic Research (UNU-WIDER).
    12. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    13. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    14. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    15. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    16. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    17. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," ifo Working Paper Series 52, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    18. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    19. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    20. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1619-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.