IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i1d10.1007_s11269-016-1548-7.html
   My bibliography  Save this article

Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models

Author

Listed:
  • I. Tsakmakis

    (Democritus University of Thrace)

  • N. Kokkos

    (Democritus University of Thrace)

  • V. Pisinaras

    (Democritus University of Thrace)

  • V. Papaevangelou

    (Democritus University of Thrace)

  • E. Hatzigiannakis

    (Soil and Water Resources Institute)

  • G. Arampatzis

    (Soil and Water Resources Institute)

  • G.D. Gikas

    (Democritus University of Thrace)

  • R. Linker

    (Israel Institute of Technology)

  • S. Zoras

    (Democritus University of Thrace)

  • V. Evagelopoulos

    (Democritus University of Thrace)

  • V.A. Tsihrintzis

    (National Technical University of Athens)

  • A. Battilani

    (Consorzio di Bonifica di secondo grado per il Canale Emiliano Romagnolo CER)

  • G. Sylaios

    (Democritus University of Thrace)

Abstract

In this paper, we tested the operational capacity of an interoperable model coupling system for the irrigation scheduling (IMCIS) at an experimental cotton (Gossypium hirsutum L.) field in Northern Greece. IMCIS comprises a meteorological model (TAPM), downscaled at field level, and a water-driven cultivation tool (AquaCrop), to optimize irrigation and enhance crop growth and yield. Both models were evaluated through on-site observations of meteorological variables, soil moisture levels and canopy cover progress. Based on irrigation management (deficit, precise and farmer’s practice) and method (drip and sprinkler), the field was divided into six sub-plots. Prognostic meteorological model results exhibited satisfactory agreement in most parameters affecting ETo, simulating adequately the soil water balance. Precipitation events were fairly predicted, although rainfall depths needed further adjustment. Soil water content levels computed by the crop growth model followed the trend of soil humidity measurements, while the canopy cover patterns and the seed cotton yield were well predicted, especially at the drip irrigated plots. Overall, the system exhibited robustness and good predicting ability for crop water needs, based on local evapotranspiration forecasts and crop phenological stages. The comparison of yield and irrigation levels at all sub-plots revealed that drip irrigation under IMCIS guidance could achieve the same yield levels as traditional farmer’s practice, utilizing approximately 32% less water, thus raising water productivity up to 0.96 kg/m3.

Suggested Citation

  • I. Tsakmakis & N. Kokkos & V. Pisinaras & V. Papaevangelou & E. Hatzigiannakis & G. Arampatzis & G.D. Gikas & R. Linker & S. Zoras & V. Evagelopoulos & V.A. Tsihrintzis & A. Battilani & G. Sylaios, 2017. "Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 563-580, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1548-7
    DOI: 10.1007/s11269-016-1548-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1548-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1548-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Perea & E. Poyato & P. Montesinos & J. Díaz, 2015. "Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5551-5567, December.
    2. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    3. Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
    4. Peter Kreins & Martin Henseler & Jano Anter & Frank Herrmann & Frank Wendland, 2015. "Quantification of Climate Change Impact on Regional Agricultural Irrigation and Groundwater Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3585-3600, August.
    5. Luis Garrote & Ana Iglesias & Alfredo Granados & Luis Mediero & Francisco Martin-Carrasco, 2015. "Quantitative Assessment of Climate Change Vulnerability of Irrigation Demands in Mediterranean Europe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 325-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ellenburg, W. Lee & Miller, Sara E. & Mishra, Vikalp & Ndungu, Lilian & Adams, Emily & Das, Narendra & Andreadis, Konstantinos M. & Limaye, Ashutosh, 2024. "Evaluation of a regional crop model implementation for sub-national yield assessments in Kenya," Agricultural Systems, Elsevier, vol. 214(C).
    2. Vassilios Pisinaras & Frank Herrmann & Andreas Panagopoulos & Evangelos Tziritis & Ian McNamara & Frank Wendland, 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study," Sustainability, MDPI, vol. 15(5), pages 1-29, February.
    3. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    5. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    6. Iphigenia Keramitsoglou & Panagiotis Sismanidis & Olga Sykioti & Vassilios Pisinaras & Ioannis Tsakmakis & Andreas Panagopoulos & Argyrios Argyriou & Chris T. Kiranoudis, 2023. "SENSE-GDD: A Satellite-Derived Temperature Monitoring Service to Provide Growing Degree Days," Agriculture, MDPI, vol. 13(5), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    3. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    4. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Gómez-Limón, José A. & Granado-Díaz, Rubén, 2023. "Assessing the demand for hydrological drought insurance in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 276(C).
    6. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    7. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    8. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    9. Philippe Debaeke & Anaïs Tibi & Agneta Forslund & Hervé Guyomard & Bertrand Schmitt, 2022. "Could domestic soybean production avoid Europe’s protein imports in 2050?," Post-Print hal-03890770, HAL.
    10. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
    12. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    13. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    14. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
    15. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    16. Kelly, T.D. & Foster, T., 2021. "AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling," Agricultural Water Management, Elsevier, vol. 254(C).
    17. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    18. Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    20. Uddin, J. & Hancock, N.H. & Smith, R.J. & Foley, J.P., 2013. "Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology," Agricultural Water Management, Elsevier, vol. 116(C), pages 89-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1548-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.