IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i8p2397-2419.html
   My bibliography  Save this article

Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain

Author

Listed:
  • Ignacio Lorite
  • Margarita García-Vila
  • María-Ascensión Carmona
  • Cristina Santos
  • María-Auxiliadora Soriano

Abstract

The Local Irrigation Advisory Services (LIAS) carry out essential work to achieve an efficient use of irrigation water at field and irrigation scheme level, which is crucial in Mediterranean irrigation systems. However, it is unusual to find agronomic and economic assessments of LIAS advice. In this work, the LIAS operating in the Genil–Cabra Irrigation Scheme (southern Spain) was evaluated during the first 5 years of its advice. Acceptance by farmers of the LIAS recommendations was evaluated by using agronomic indicators, such as ARIS (Annual Relative Irrigation Supply). ARIS LIAS (actual irrigation applied v. recommendation of LIAS) with values ranging from about 0.23 for wheat and sunflower, and 0.94 for maize, also detecting a high variability between farmers, which indicated a scant acceptance of the LIAS recommendations. The economic evaluation of irrigation was made through two economic indicators, Irrigation Water Productivity (IWP) and Irrigation Water Benefit (IWB). IWP values varied significantly between different crops: around 0.23 € m −3 in wheat, sunflower and maize, about 0.53 € m −3 in cotton and sugar beet, and values higher than 2.0 € m −3 in garlic, for optimal irrigation schedules. For IWB, trends were similar, emphasizing the low IWB values in wheat and sunflower (average values of 0.06 and 0.13 € m −3 , respectively). Consideration of these economic indicators by LIAS could not only help to obtain more suitable and economically profitable irrigation schedules, but also contribute towards a greater acceptance of advisory services by farmers, by shifting the emphasis from maximizing production to maximizing irrigation profitability. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:8:p:2397-2419
    DOI: 10.1007/s11269-012-0023-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0023-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0023-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Zhang, H., 2003. "Improving water productivity through deficit irrigation: examples from Syria, the North China Plain and Oregon, USA," IWMI Books, Reports H032649, International Water Management Institute.
    3. Bos, M. G. & Burton, M. A. & Molden, David J., 2005. "Irrigation and drainage performance assessment: practical guidelines," IWMI Books, Reports H037064, International Water Management Institute.
    4. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    5. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    6. Erwin Schmid & Franz Sinabell, 2004. "On the Choice of Farm Management Practices after the Reform of the Common Agricultural Policy in 2003," WIFO Working Papers 233, WIFO.
    7. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    8. Garci­a-Vila, M. & Lorite, I.J. & Soriano, M.A. & Fereres, E., 2008. "Management trends and responses to water scarcity in an irrigation scheme of Southern Spain," Agricultural Water Management, Elsevier, vol. 95(4), pages 458-468, April.
    9. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    10. Quinones, Pedroza Hector & Unland, Helene & Ojeda, Waldo & Sifuentes, Ernesto, 1999. "Transfer of irrigation scheduling technology in Mexico," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 333-339, May.
    11. Lorite, I.J. & Mateos, L. & Orgaz, F. & Fereres, E., 2007. "Assessing deficit irrigation strategies at the level of an irrigation district," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 51-60, July.
    12. Martin de Santa Olalla, F. & Calera, A. & Dominguez, A., 2003. "Monitoring irrigation water use by combining Irrigation Advisory Service, and remotely sensed data with a geographic information system," Agricultural Water Management, Elsevier, vol. 61(2), pages 111-124, June.
    13. Faci, J. M. & Bensaci, A. & Slatni, A. & Playan, E., 2000. "A case study for irrigation modernisation: I. Characterisation of the district and analysis of water delivery records," Agricultural Water Management, Elsevier, vol. 42(3), pages 313-334, January.
    14. Teresa Serra & David Zilberman & Barry K. Goodwin & Keijo Hyvonen, 2005. "Replacement of Agricultural Price Supports by Area Payments in the European Union and the Effects on Pesticide Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 870-884.
    15. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    16. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    17. Gavilan, P. & Lorite, I.J. & Tornero, S. & Berengena, J., 2006. "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, Elsevier, vol. 81(3), pages 257-281, March.
    18. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    19. Córcoles, J.I. & de Juan, J.A. & Ortega, J.F. & Tarjuelo, J.M. & Moreno, M.A., 2010. "Management evaluation of Water Users Associations using benchmarking techniques," Agricultural Water Management, Elsevier, vol. 98(1), pages 1-11, December.
    20. Ortega, J.F. & de Juan, J.A. & Tarjuelo, J.M., 2005. "Improving water management: The irrigation advisory service of Castilla-La Mancha (Spain)," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 37-58, August.
    21. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firat Arslan & Juan Ignacio Córcoles Tendero & Juan Antonio Rodríguez Díaz & Demetrio Antonio Zema, 2023. "Comparison of Irrigation Management in Water User Associations of Italy, Spain and Turkey Using Benchmarking Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 55-74, January.
    2. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    3. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    4. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Nadeem, Adeel Ahmad & Zha, Yuanyuan & Shi, Liangsheng & Zafar, Zeeshan & Ali, Shoaib & Zhang, Yufan & Altaf, Adnan Raza & Afzal, Muhammad & Zubair, Muhammad, 2023. "SAFER-ET based assessment of irrigation patterns and impacts on groundwater use in the central Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 289(C).
    6. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    7. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Lorite, I.J. & Gabaldón-Leal, C. & Ruiz-Ramos, M. & Belaj, A. & de la Rosa, R. & León, L. & Santos, C., 2018. "Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 247-261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    3. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    4. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    5. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.
    6. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    7. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    8. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    9. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    10. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    11. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    12. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    13. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    14. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    15. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    16. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    18. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    19. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    20. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:8:p:2397-2419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.