IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i15d10.1007_s11269-017-1794-3.html
   My bibliography  Save this article

Optimizing Adjustments to Transboundary Water Sharing Plans: A Multi-Basin Approach

Author

Listed:
  • Sarah Acquah

    (New Mexico State University)

  • Frank A. Ward

    (New Mexico State University)

Abstract

Afghanistan contributes water supplies to Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan. However, with the exception of the Helmand Basin, Afghanistan has negotiated transboundary water sharing agreements with no downstream country. This paper describes a constrained optimization framework to minimize economic costs within each of nine Afghan transboundary basins of adapting to potential water sharing agreements. Model results show impacts of water agreements on farm income and food security for each Afghan basin. Our results show that unrestricted trading reduces the economic costs of adapting to water sharing treaties by two to 6 % compared to the conventional water sharing system. A higher scale of reservoir storage capacity as well as market trading of water among regions moderates costs of water shortages, both with and without water agreements in place.

Suggested Citation

  • Sarah Acquah & Frank A. Ward, 2017. "Optimizing Adjustments to Transboundary Water Sharing Plans: A Multi-Basin Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5019-5042, December.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1794-3
    DOI: 10.1007/s11269-017-1794-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1794-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1794-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen A. Marglin, 1963. "The Social Rate of Discount and The Optimal Rate of Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 77(1), pages 95-111.
    2. Jing Ma & Keith Hipel & Mitali De & Jun Cai, 2008. "Transboundary Water Policies: Assessment, Comparison and Enhancement," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1069-1087, August.
    3. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    4. Doppler, Werner & Salman, Amer Z. & Al-Karablieh, Emad K. & Wolff, Heinz-Peter, 2002. "The impact of water price strategies on the allocation of irrigation water: the case of the Jordan Valley," Agricultural Water Management, Elsevier, vol. 55(3), pages 171-182, June.
    5. Dinar, Ariel & Wolf, Aaron, 1994. "International Markets for Water and the Potential for Regional Cooperation: Economic and Political Perspectives in the Western Middle East," Economic Development and Cultural Change, University of Chicago Press, vol. 43(1), pages 43-66, October.
    6. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    7. Qureshi, A. S., 2002. "Water resources management in Afghanistan: The issues and options," IWMI Working Papers H031284, International Water Management Institute.
    8. Furat A. M. Al-Faraj & Dimitris Tigkas, 2016. "Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5131-5143, November.
    9. Saskia Pelt & Rob Swart, 2011. "Climate Change Risk Management in Transnational River Basins: The Rhine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3837-3861, November.
    10. Pieter Zaag, 2007. "Asymmetry and Equity in Water Resources Management; Critical Institutional Issues for Southern Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 1993-2004, December.
    11. Yi Xiao & Keith W. Hipel & Liping Fang, 2016. "Incorporating Water Demand Management into a Cooperative Water Allocation Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2997-3012, July.
    12. Vincent Thomas & Jeroen Warner, 2015. "Hydropolitics in the Harirud/Tejen River Basin: Afghanistan as hydro-hegemon?," Water International, Taylor & Francis Journals, vol. 40(4), pages 593-613, July.
    13. B.J.M Goes & S.E. Howarth & R.B. Wardlaw & I.R. Hancock & U.N. Parajuli, 2016. "Integrated water resources management in an insecure river basin: a case study of Helmand River Basin, Afghanistan," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(1), pages 3-25, January.
    14. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    15. Ziad Mimi & Bassam Sawalhi, 2003. "A Decision Tool for Allocating the Waters of the Jordan River Basin between all Riparian Parties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(6), pages 447-461, December.
    16. Mark Zeitoun & Naho Mirumachi, 2008. "Transboundary water interaction I: reconsidering conflict and cooperation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 8(4), pages 297-316, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalilov, Shokhrukh-Mirzo & Rahman, Wakilur & Palash, Salauddin & Jahan, Hasneen & Mainuddin, Mohammed & Ward, Frank A., 2022. "Exploring strategies to control the cost of food security: Evidence from Bangladesh," Agricultural Systems, Elsevier, vol. 196(C).
    2. Ward, Frank A. & Hurd, Brian H. & Sayles, Sarah, 2018. "Water currents in New Mexico: A global reach," Western Economics Forum, Western Agricultural Economics Association, vol. 16(1).
    3. Jacob Rightnar & Ariel Dinar, 2020. "The Welfare Implications of Bankruptcy Allocation of the Colorado River Water: The Case of the Salton Sea Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2353-2370, June.
    4. Fang Wan & Yu Wang & Xiangnan Zhou & Xiaokang Zheng & Jian Wu & Lingfeng Xiao, 2022. "Study on Balanced Allocation of Water Resources in the Yellow River Basin Based on Water Benefit Sharing," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    3. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    4. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    5. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    6. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    7. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    8. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    9. Jansson, Torbjörn & Heckelei, Thomas & Gocht, Alexander & Basnet, Shyam Kumar & Zhang, Yinan & Neuenfeldt, Sebastian, 2014. "Analysing impacts of changing price variability with estimated farm risk-programming models," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182665, European Association of Agricultural Economists.
    10. Doole, Graeme J. & Marsh, Dan K., 2014. "Use of positive mathematical programming invalidates the application of the NZFARM model: Response to Daigneault et al. (2014)," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), April.
    11. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    12. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    13. Doole, Graeme J. & Marsh, Dan K., 2014. "Methodological limitations in the evaluation of policies to reduce nitrate leaching from New Zealand agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    14. Mack, Gabriele & Ferjani, Ali & Mohring, Anke & Zimmerman, Albert & Mann, Stefan, 2015. "How did farmers act? An ex-post validation of normative and positive mathematical programming for an agent-based sector model," 2015 Conference, August 9-14, 2015, Milan, Italy 212201, International Association of Agricultural Economists.
    15. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.
    16. Pérez-Blanco, C.D. & Gutiérrez-Martín, C., 2017. "Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback," Agricultural Water Management, Elsevier, vol. 190(C), pages 6-20.
    17. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Montilla-López, Nazaret M., 2021. "Priority water rights. Are they useful for improving water-use efficiency at the irrigation district level?," Agricultural Water Management, Elsevier, vol. 257(C).
    18. Carpentier, Alain & Gohin, Alexandre, 2015. "On the economic theory of crop rotations: value of the crop rotation effects and implications on acreage choice modeling," Working Papers 205299, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    19. Koutchadé, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modelling of production decisions of heterogeneous farmers with mixed models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205098, Agricultural and Applied Economics Association.
    20. Koutchade, Philippe & Carpentier, Alain & Femenia, Fabienne, 2015. "Accounting for unobserved heterogeneity in micro-econometric agricultural production models: a random parameter approach," 2015 Conference, August 9-14, 2015, Milan, Italy 212015, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1794-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.