IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i15d10.1007_s11269-017-1781-8.html
   My bibliography  Save this article

Performance Assessment of a Coupled Particle Swarm Optimization and Network Flow Programming Model for Optimum Water Allocation

Author

Listed:
  • Mojtaba Shourian

    (Shahid Beheshti University)

  • S. Jamshid Mousavi

    (Amirkabir University of Technology)

Abstract

Water resources allocation problems are mainly categorized in two classes of simulation and optimization. In most cases, optimization problems due to the number of variables, constraints and nonlinear feasible search space are known as a challenging subject in the literature. In this research, by coupling particle swarm optimization (PSO) algorithm and a network flow programming (NFP) based river basin simulation model, a PSO-NFP hybrid structure is constructed for optimum water allocation planning. In the PSO-NFP model, the NFP core roles as the fast inner simulation engine for finding optimum values for a large number of water discharges in the network links (rivers and canals) and nodes (reservoirs and demands) while the heuristic PSO algorithm forms the outer optimization cover to search for the optimum values of reservoirs capacities and their storage priorities. In order to assess the performance of the PSO-NFP model, three hypothetical test problems are defined, and their equivalent nonlinear mathematical programs are developed in LINGO and the results are compared. Finally, the PSO-NFP model is applied in solving a real river basin water allocation problem. Results indicate that the applied method of coupling PSO and NFP has an efficient ability for handling river basin-scale water resources optimization problems.

Suggested Citation

  • Mojtaba Shourian & S. Jamshid Mousavi, 2017. "Performance Assessment of a Coupled Particle Swarm Optimization and Network Flow Programming Model for Optimum Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4835-4853, December.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1781-8
    DOI: 10.1007/s11269-017-1781-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1781-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1781-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    2. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    3. M. Shourian & S. Mousavi & A. Tahershamsi, 2008. "Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1347-1366, October.
    4. J. Yazdi & S. Salehi Neyshabouri, 2012. "A Simulation-Based Optimization Model for Flood Management on a Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4569-4586, December.
    5. H. Lu & G. Huang & L. He, 2012. "Simulation-Based Inexact Rough-Interval Programming for Agricultural Irrigation Management: A Case Study in the Yongxin County, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4163-4182, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mengyi & Deng, Mingjiang & Ling, Hongbo & Xu, Jia, 2024. "Development of a new rotational irrigation model in an arid basin based on ecological zoning and sluice regulation," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Haiming Yu & Yuhui Hu & Lianxing Qi & Kai Zhang & Jiwen Jiang & Haiyuan Li & Xinyue Zhang & Zihan Zhang, 2023. "Hyperspectral Detection of Moisture Content in Rice Straw Nutrient Bowl Trays Based on PSO-SVR," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    3. Navid Shenava & Mojtaba Shourian, 2018. "Optimal Reservoir Operation with Water Supply Enhancement and Flood Mitigation Objectives Using an Optimization-Simulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4393-4407, October.
    4. Fatemeh Barzegari Banadkooki & Jan Adamowski & Vijay P. Singh & Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Ahmed EL-Shafie, 2020. "Crow Algorithm for Irrigation Management: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1021-1045, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    2. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    4. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Ali Fazlali & Mojtaba Shourian, 2018. "A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 67-81, January.
    6. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    7. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    8. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    9. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    10. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    11. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    12. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    14. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    15. M. Ahmadi & Omid Bozorg Haddad & M. Mariño, 2014. "Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 131-147, January.
    16. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    17. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.
    18. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    19. Farzad Emami & Manfred Koch, 2018. "Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change," Sustainability, MDPI, vol. 10(11), pages 1-32, October.
    20. J. Doummar & M. Massoud & R. Khoury & M. Khawlie, 2009. "Optimal Water Resources Management: Case of Lower Litani River, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2343-2360, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1781-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.