IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i14d10.1007_s11269-017-1764-9.html
   My bibliography  Save this article

Determining Location and Capacity of Dams through Economic and Environmental Indicators

Author

Listed:
  • R. Roozbahani

    (RMIT University
    Water Research Institute
    Water Research Institute)

  • B. Abbasi

    (RMIT University)

  • S. Schreider

    (RMIT University)

Abstract

Construction of dams is a conventional way to deal with the problem of water scarcity in undeveloped basins. The economic and the environmental effects of dams are often evaluated locally rather than in a basin frame. The distinctive feature of this paper is to propose a basin-wide approach, comprised three steps for determining dams’ locations and dams’ capacities based on optimization modelling. Our approach provides an environmentally sound plan for surface water development that also results in the highest profit for the basin, for the sake of achieving sustainable development. The first step of our approach runs a mixed-integer linear model to give optimal locations and capacities of new dams for various number of dams along with satisfying the environmental water requirements in the entire basin. The second step uses a sensitivity analysis to finalize the number of dams in the basin by comparison of the basin profits, given by the various number of dams. Finally, the third step of the algorithm investigates the possibility of dams’ capacities reduction, for the selected number of dams while they still provide the same basin profit, given from the first step, using another mixed-integer linear model. The introduced approach was applied to the Sefidrud Basin, Iran and its results showed that three dams could lead to an environmentally sound sustainable economic development for the Basin.

Suggested Citation

  • R. Roozbahani & B. Abbasi & S. Schreider, 2017. "Determining Location and Capacity of Dams through Economic and Environmental Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4539-4556, November.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:14:d:10.1007_s11269-017-1764-9
    DOI: 10.1007/s11269-017-1764-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1764-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1764-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    2. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    3. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    4. Ashutosh Singh & Claudius Bürger & Olaf Cirpka, 2013. "Optimized Sustainable Groundwater Extraction Management: General Approach and Application to the City of Lucknow, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4349-4368, September.
    5. Caruso, C. & Colorni, A. & Paruccini, M., 1993. "The regional urban solid waste management system: A modelling approach," European Journal of Operational Research, Elsevier, vol. 70(1), pages 16-30, October.
    6. Akbar Karimi & Reza Ardakanian, 2010. "Development of a Dynamic Long-Term Water Allocation Model for Agriculture and Industry Water Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1717-1746, July.
    7. Lluís M Plà & Daniel L Sandars & Andrew J Higgins, 2014. "A perspective on operational research prospects for agriculture," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1078-1089, July.
    8. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Schulz & Julia Martin-Ortega & Klaus Glenk, 2019. "Understanding Public Views on a Dam Construction Boom: the Role of Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4687-4700, November.
    2. R. Roozbahani & B. Abbasi & S. Schreider & J. Iversen, 2021. "Dam Location-Allocation under Multiple Hydrological Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 993-1009, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Roozbahani & Babak Abbasi & Sergei Schreider & Zahra Hosseinifard, 2020. "A basin-wide approach for water allocation and dams location-allocation," Annals of Operations Research, Springer, vol. 287(1), pages 323-349, April.
    2. Khawar Naeem & Adel Zghibi & Adel Elomri & Annamaria Mazzoni & Chefi Triki, 2023. "A Literature Review on System Dynamics Modeling for Sustainable Management of Water Supply and Demand," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    3. Yang, Wei & Yang, Zhifeng & Qin, Yan, 2011. "An optimization approach for sustainable release of e-flows for lake restoration and preservation: Model development and a case study of Baiyangdian Lake, China," Ecological Modelling, Elsevier, vol. 222(14), pages 2448-2455.
    4. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    5. Esteve Nadal-Roig & Lluís Miquel Plà-Aragonès & Víctor Manuel Albornoz, 2023. "Supply Chains: Planning the Transportation of Animals among Facilities," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    6. E D Adamides & P Mitropoulos & I Giannikos & I Mitropoulos, 2009. "A multi-methodological approach to the development of a regional solid waste management system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 758-770, June.
    7. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    8. Murat Öztürk, 2024. "An Agro-Food Planning System: Democratic, Decentralized, Holistic, and Voluntary Participatory," Sustainability, MDPI, vol. 16(21), pages 1-27, October.
    9. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    10. Stella Santana & Gilberto Barroso, 2014. "Integrated Ecosystem Management of River Basins and the Coastal Zone in Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4927-4942, November.
    11. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    12. Bazzani, Guido Maria, 1998. "Integrated Soil Waste Management: A Multicriteria Approach," Conference Papers 14492, University of Minnesota, Center for International Food and Agricultural Policy.
    13. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    14. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    15. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    16. Hokkanen, Joonas & Salminen, Pekka, 1997. "Choosing a solid waste management system using multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 98(1), pages 19-36, April.
    17. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    18. Min, Hokey & Ko, Hyun-Jeung, 2008. "The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers," International Journal of Production Economics, Elsevier, vol. 113(1), pages 176-192, May.
    19. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    20. Jin Huang & Hao Yang & Wei He & Yu Li, 2022. "Ecological Service Value Tradeoffs: An Ecological Water Replenishment Model for the Jilin Momoge National Nature Reserve, China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:14:d:10.1007_s11269-017-1764-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.