IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i1p197-210.html
   My bibliography  Save this article

Investigation of Wetting Front Propagation Dynamics Using Soil Impedance Measurements: Implications for Modelling and Irrigation Scheduling

Author

Listed:
  • Jose Gutierrez Gnecchi
  • Arturo Mendez Patiño
  • Fernando Landeros Paramo
  • Adriana del Carmen Tellez Anguiano
  • Daniel Lorias Espinoza

Abstract

The authors propose a measurement method that divides the depth of the soil sample in discrete regions to investigate soil water propagation dynamics using soil impedance measurements. Experiments were conducted on a cylindrical phantom using a clay loam soil sample (60 % clay, 21 % loam and 19 % sand). The resulting impedance changes represent the wetting front (WF) propagation process at the different measurement depths. The measured impedance data is used to A) show graphically the wetting front propagation process, obtain B) a 1st order model, C) an ARX1821 model of the impedance change as a function of the irrigation volume applied and D) estimating changes in water content using a neural network. The results indicate that the proposed measurement technique can be used to detect and predict the movement of liquid trough the soil sample. The neural network permits inferring the water content from impedance and soil-water mixture temperature values. Changes in soil impedance in each segment, due to the water propagating downwards through the soil sample, can be used to study the dynamics of the wetting front, irrigation scheduling and model improvement from physical data. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Jose Gutierrez Gnecchi & Arturo Mendez Patiño & Fernando Landeros Paramo & Adriana del Carmen Tellez Anguiano & Daniel Lorias Espinoza, 2015. "Investigation of Wetting Front Propagation Dynamics Using Soil Impedance Measurements: Implications for Modelling and Irrigation Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 197-210, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:197-210
    DOI: 10.1007/s11269-014-0835-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0835-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0835-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longshan Zhao & Linhua Wang & Xinlan Liang & Jian Wang & Faqi Wu, 2013. "Soil Surface Roughness Effects on Infiltration Process of a Cultivated Slopes on the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4759-4771, November.
    2. ST. Elmaloglou & N. Malamos, 2007. "Estimation of Width and Depth of the Wetted Soil Volume Under a Surface Emitter, Considering Root Water-Uptake and Evaporation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1325-1340, August.
    3. Shakir Ali & Narayan Ghosh & Ranvir Singh & B. Sethy, 2013. "Generalized Explicit Models for Estimation of Wetting Front Length and Potential Recharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2429-2445, May.
    4. D. Pantelakis & Th. Zissis & E. Anastasiadou-Partheniou & E. Baltas, 2012. "Numerical Models for the Simulation of Overland Flow in Fields Within Surface Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1217-1229, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayan Ghosh & Sumant Kumar & Gesche Grützmacher & Shakeel Ahmed & Surjeet Singh & Christoph Sprenger & Raj Singh & Biswajit Das & Tanvi Arora, 2015. "Semi-Analytical Model for Estimation of Unsteady Seepage from a Large Water Body Influenced by Variable Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3111-3129, July.
    2. Kilic, Murat, 2020. "A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Longshan Zhao & Linhua Wang & Xinlan Liang & Jian Wang & Faqi Wu, 2013. "Soil Surface Roughness Effects on Infiltration Process of a Cultivated Slopes on the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4759-4771, November.
    4. Jia WU & Longshan ZHAO & Faqi WU & Zhanbin LI, 2016. "The role of surface microreliefs in influencing splash erosion: A laboratory study," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(2), pages 83-89.
    5. Zhengan Su & Donghong Xiong & Yifan Dong & Dan Yang & Su Zhang & Baojun Zhang & Xueyong Zheng & Jianhui Zhang & Liangtao Shi, 2015. "Influence of bare soil and cultivated land use types upstream of a bank gully on soil erosion rates and energy consumption for different gully erosion zones in the dry-hot valley region, Southwest Chi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 183-202, November.
    6. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Yi Wang & Chengsheng Ni & Sheng Wang & Deti Xie & Jiupai Ni, 2021. "A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    8. Changbin Li & Jiaguo Qi & Shuaibing Wang & Linshan Yang & Wenjin Yang & Songbing Zou & Gaofeng Zhu & Wenyan Li, 2014. "A Holistic System Approach to Understanding Underground Water Dynamics in the Loess Tableland: A Case Study of the Dongzhi Loess Tableland in Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2937-2951, August.
    9. Xia Zhang & Guo Yu & Zhan Li & Peng Li, 2014. "Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2415-2433, July.
    10. Xianhong Meng & Min Zhang & Jiahong Wen & Shiqiang Du & Hui Xu & Luyang Wang & Yan Yang, 2019. "A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    11. Shakir Ali & Adlul Islam, 2019. "Evaluation of Hantush’s S Function Estimation Methods for Predicting Rise in Water Table," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2239-2260, May.
    12. Stamatios Elmaloglou & Konstantinos Soulis & Nicholas Dercas, 2013. "Simulation of Soil Water Dynamics Under Surface Drip Irrigation from Equidistant Line Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4131-4148, September.
    13. Zhao, Longshan & Hou, Rui & Wu, Faqi, 2019. "Rainwater harvesting capacity of soils subjected to reservoir tillage during rainfall on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 217(C), pages 193-200.
    14. Ghasem Zarei & Mehdi Homaee & Abdolmajid Liaghat, 2009. "Modeling Transient Evaporation from Descending Shallow Groundwater Table Based on Brooks–Corey Retention Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2867-2876, November.
    15. Hojjat Ghorbani Vaghei & Hossein Ali Bahrami & Farzin Nasiri Saleh, 2023. "Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3037-3051, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:197-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.