IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i7d10.1007_s11269-019-02272-1.html
   My bibliography  Save this article

Evaluation of Hantush’s S Function Estimation Methods for Predicting Rise in Water Table

Author

Listed:
  • Shakir Ali

    (ICAR-Indian Institute of Soil and Water Conservation (IISWC), Research Centre)

  • Adlul Islam

    (Natural Resource Management Division, Indian Council of Agricultural Research (ICAR))

Abstract

Hantush’s model is widely used for predicting rise in water table in response to groundwater recharge. Several approximate methods of the Hantush mound function, S(α, β) have been developed to overcome the limitations of Hantush’s tabulated values of the S(α, β) function. These approximate methods have their own advantages and disadvantages, and it is difficult to identify the most accurate and computationally efficient S(α, β) estimation method. In this study, performance of four different algebraic approximate S(α, β) estimation methods are compared with the Hantush method using the published data. The four different methods considered are Swamee and Ohja (1997) (SO), Singh (2012) (SI), Vatankhah (2013) (VA) and Gauss-Legendre quadrature (GL) method with various Gaussian points (GP). Seven statistical accuracy and computation efficiency indicators are used to assess the performance of different S(α, β) estimation methods. The GL method with 100 to16 GPs is found to be the most accurate S(α, β) estimation method. This is followed by the SO, GL with 14 to 12 GPs, VA, GL with 10 GP, SI, and GL with 9 to 3 GPs. A good trade off between accuracy and efficiency is found with the SO, VA, and GL method with 14, 12 and 10 GPs. Comprehensive analysis of different S(α, β) estimation methods, and their ranking based on overall performance index will be helpful in modelling water table rise due to groundwater recharge, optimum design of recharge basin, and evaluation of effectiveness of recharge basins in groundwater recharging.

Suggested Citation

  • Shakir Ali & Adlul Islam, 2019. "Evaluation of Hantush’s S Function Estimation Methods for Predicting Rise in Water Table," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2239-2260, May.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02272-1
    DOI: 10.1007/s11269-019-02272-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02272-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02272-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudzai Chipongo & Mehdi Khiadani, 2015. "Comparison of Simulation Methods for Recharge Mounds Under Rectangular Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2855-2874, June.
    2. F. Pliakas & C. Petalas & I. Diamantis & A. Kallioras, 2005. "Modeling of Groundwater Artificial Recharge by Reactivating an Old Stream Bed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 279-294, June.
    3. Shakir Ali & Narayan Ghosh & Ranvir Singh & B. Sethy, 2013. "Generalized Explicit Models for Estimation of Wetting Front Length and Potential Recharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2429-2445, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayan Ghosh & Sumant Kumar & Gesche Grützmacher & Shakeel Ahmed & Surjeet Singh & Christoph Sprenger & Raj Singh & Biswajit Das & Tanvi Arora, 2015. "Semi-Analytical Model for Estimation of Unsteady Seepage from a Large Water Body Influenced by Variable Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3111-3129, July.
    2. Longshan Zhao & Linhua Wang & Xinlan Liang & Jian Wang & Faqi Wu, 2013. "Soil Surface Roughness Effects on Infiltration Process of a Cultivated Slopes on the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4759-4771, November.
    3. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    4. Jose Gutierrez Gnecchi & Arturo Mendez Patiño & Fernando Landeros Paramo & Adriana del Carmen Tellez Anguiano & Daniel Lorias Espinoza, 2015. "Investigation of Wetting Front Propagation Dynamics Using Soil Impedance Measurements: Implications for Modelling and Irrigation Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 197-210, January.
    5. Jacob Scherberg & Troy Baker & John Selker & Rick Henry, 2014. "Design of Managed Aquifer Recharge for Agricultural and Ecological Water Supply Assessed Through Numerical Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4971-4984, November.
    6. Kudzai Chipongo & Mehdi Khiadani, 2015. "Comparison of Simulation Methods for Recharge Mounds Under Rectangular Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2855-2874, June.
    7. Khaldoon Al-Qudah & Nizar Abu-Jaber, 2009. "A GIS Database for Sustainable Management of Shallow Water Resources in the Tulul al Ashaqif Region, NE Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 603-615, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02272-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.